
Volume 3, Number 8 http://jisar.org/3/8/ April 20, 2010

In this issue:

Creating the Pilot AJAX Enabled Query Tool

Rachel Ford Robert Dollinger
University of Wisconsin Stevens Point University of Wisconsin Stevens Point

Stevens Point, Wisconsin, 54481-3897, USA Stevens Point, Wisconsin, 54481-3897, USA

Abstract: The Web Based AJAX Enabled Query Tool (AEQ tool) is an educational software de-
signed to simplify and enhance database related learning. The goals of this tool were to: (1) Provide
students with an easy-to-use, remotely accessible database interface that seamlessly integrated ac-
cess to multiple database clients (MSSQL, MySQL, Oracle). (2) Provide students with easy means
for interaction outside of class through live chat and a shared working mode. (3) Provide instructors
with an intuitive interface for organizing both class participants and also class materials. These goals
could only be met through a combination of internet technologies. In addition to employing tradi-
tional client-server processing approaches throughout the application, the AEQ tool relies heavily
on AJAX technology in order to provide the desired functionality while delivering a seamless user
experience.

Keywords: Query tool, Rich Internet Applications, AJAX, databases, educational software

Recommended Citation: Ford and Dollinger (2010). Creating the Pilot AJAX Enabled Query
Tool. Journal of Information Systems Applied Research, 3 (8). http://jisar.org/3/8/. ISSN:
1946-1836. (A preliminary version appears in The Proceedings of CONISAR 2008: §2335. ISSN:
0000-0000.)

This issue is on the Internet at http://jisar.org/3/8/

JISAR 3 (8) Journal of Information Systems Applied Research 2

The Journal of Information Systems Applied Research (JISAR) is a peer-reviewed academic
journal published by the Education Special Interest Group (EDSIG) of the Association of Infor-
mation Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1946-1836. • First issue: 1
Dec 2008. • Title: Journal of Information Systems Applied Research. Variants: JISAR. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@jisar.org. • Subscription price: free. • Electronic access:
http://jisar.org/ • Contact person: Don Colton (editor@jisar.org)

2010 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington

EDSIG President 2009-2010

Alan R. Peslak
Penn State

Vice President 2010

Scott Hunsinger
Appalachian State
Membership 2010

Michael A. Smith
High Point Univ
Secretary 2010

Brenda McAleer
U Maine Augusta
Treasurer 2010

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Michael Battig
St Michael’s College
Director 2010-2011

Mary Lind
North Carolina A&T
Director 2010-2011

Albert L. Harris
Appalachian St
JISE Editor ret.

S. E. Kruck
James Madison U

JISE Editor

Wendy Ceccucci
Quinnipiac University

Conferences Chair 2010

Kevin Jetton
Texas State

FITE Liaison 2010

Journal of Information Systems Applied Research Editors

Don Colton
Professor

BYU Hawaii
Editor

Scott Hunsinger
Assistant Professor
Appalachian State
Associate Editor

Alan R. Peslak
Associate Professor

Penn State
Associate Editor

Thomas N. Janicki
Associate Professor
UNC Wilmington
Associate Editor

This paper was selected for inclusion in the journal based on blind reviews from three or more peers
placing it in the 30% acceptance rate category for papers submitted to CONISAR 2008.

EDSIG activities include the publication of JISAR and ISEDJ, the organization and execution of
the annual CONISAR and ISECON conferences held each fall, the publication of the Journal of
Information Systems Education (JISE), and the designation and honoring of an IS Educator of the
Year. • The Foundation for Information Technology Education has been the key sponsor of ISECON
over the years. • The Association for Information Technology Professionals (AITP) provides the
corporate umbrella under which EDSIG operates.

c© Copyright 2010 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 3

Creating the Pilot AJAX Enabled Query Tool

Rachel Ford

rford191@uwsp.edu

Robert Dollinger

rdolling@uwsp.edu

Department of Computing and New Media Technologies

University of Wisconsin-Stevens Point
Stevens Point, Wisconsin 54481-3897 USA

Abstract

The Web Based AJAX Enabled Query Tool (AEQ tool) is an educational software designed to

simplify and enhance database related learning. The goals of this tool were to: (1) Provide

students with an easy-to-use, remotely accessible database interface that seamlessly inte-

grated access to multiple database clients (MSSQL, MySQL, Oracle). (2) Provide students with

easy means for interaction outside of class through live chat and a shared working mode. (3)

Provide instructors with an intuitive interface for organizing both class participants and also

class materials. These goals could only be met through a combination of internet technolo-

gies. In addition to employing traditional client-server processing approaches throughout the

application, the AEQ tool relies heavily on AJAX technology in order to provide the desired

functionality while delivering a seamless user experience.

Keywords: Query tool, Rich Internet Applications, AJAX, databases, educational software

1. INTRODUCTION

A number of challenges face students

enrolled in database courses, particularly

introductory courses. While some of these

challenges, such as understanding relational

database concepts and SQL syntax are, of

course, to be expected, others can over-

whelm and even distract from the purpose of

the class. This is particularly true for stu-

dents who are new to SQL and database

concepts, and who must initially struggle

both with learning these concepts and syn-

tax as well as adapting to complex, often-

times very different, database interfaces

(such as MSSQL, Oracle, MySql, etc.). Fur-

thermore, even for the advanced student

who is comfortable enough with these topics

as to be able to master the interfaces, as

well as for the beginning student, remote

access to databases can be problematic;

while there are a number of means to com-

bat this issue, none are without their own

difficulties. Finally, even where they are

available, tools incorporating class content

and providing the means for students and

instructors to easily interact and communi-

cate about the course and its related mate-

rials, off campus and on, during class and

after, are separate from student workspac-

es.

The AEQ tool was designed to combat these

challenges and simplify and enhance the

student’s learning experience (as well as the

instructor’s teaching experience): to provide

instructors with the means to add and or-

ganize class content; to provide students

and instructors with the means to share

work and communicate easily; to provide a

robust interface for seamless integration of

all available databases; and to provide relia-

ble remote access to databases, class con-

tent, and class instructor(s) and participants.

The AEQ tool is not designed to necessarily

replace, but to enhance and work in con-

junction with, individual database interfaces

and classroom tools, and to simplify intro-

ductory learning, multiple database access,

and remote access.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 4

To implement an application that met each

of these goals, a unique combination of tra-

ditional web processing techniques as well

as the AJAX technology (Gibbs, 2007;

McClure, 2006; Moore, 2007; Pars, 2007;

Woolston, 2006; Zakas, 2006) was em-

ployed. This paper examines the implemen-

tation of this tool resulting from a senior

capstone project, and the combination of

technologies and approaches used. The re-

mainder of this paper is organized as fol-

lows: section 2 discusses the functional

breakdown of the main application compo-

nents, and section 3 examines the architec-

ture of the application. Section 4 overviews

the technologies employed, and section 5

examines the particulars of implementing

the application’s main functional compo-

nents. Finally, section 6 discusses some

functional limitations of the application at

present, and explores potential for future

development and enhancement of the AEQ

tool.

2. APPLICATION COMPONENTS

The AEQ tool consists of several major com-

ponents, each of which interacts to perform

unique tasks:

• SQL Launcher

• Content Viewer and Manager

• Classroom and User Administration

• Class Interaction Tools

SQL Launcher

The SQL Launcher provides a Web based,

unified interface to execute SQL queries and

commands against MSSQL, MySQL and

Oracle databases (although future expansion

to include support for any number of other

database systems is fully possible). The SQL

Launcher can be used as an alternative to

DBMS specific Windows based client inter-

faces (see Figure 1).

During initial class setup (handled through

the administration tools), the course instruc-

tor or administrator would determine which

types of databases would be available to

students, and create those databases accor-

dingly. After this setup, the AEQ tool will

create and store the corresponding connec-

tion strings, and retrieve them at login.

Switching from one database to the other is

as easy as selecting the appropriate data-

base in a group of radio buttons. Thus run-

ning the same SQL code against the various

systems is made very easy.

Figure 1. Equivalent Functionality

The SQL Launcher presents two main areas:

the Query pane and the result pane (Figure

2).

Figure 2. The SQL Launcher Executing a
Query

The size of both areas is dynamically adjust-

able so that the two can trade the available

space in the browser window. In the query

area one can edit and/or paste any amount

of SQL code, then highlight a selection from

it and run the highlighted code. If nothing is

selected the entire code in the window will

be executed. The result pane will display

either the results returned by the SQL que-

ries or the messages returned by the target

server, each in its own tab.

Content Viewer and Manager

The Content Viewer and Manager is the most

complex part of the AEQ application, and are

meant to accompany the SQL Launcher in

order to enhance the educational benefits

and usability of the tool. It provides a struc-

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 5

tured and intuitive interface to serve the

needs of both students, who are able to view

the available course content, and instruc-

tors, who have the possibility to

add/edit/delete and manage the content of

their courses in a flexible way. Two different

views, a Student View and an Instructor

View of the course content are provided.

Instructors have access to both views, while

students only have access to the Student

View.

The Student View allows users to navigate

through the course content in two ways: by

using a context sensitive Table of Contents

control where a click on an item brings for-

ward the corresponding full content or by

expanding and hiding the full content items

as desired (Figure 3). Furthermore, imple-

mentation is provided for users to copy and

paste SQL code into the SQL Launcher for

testing and study.

Figure 3. Student View of the full

course content

Much more functionality is available to in-

structors in order not only to view, but also

to manage, their course content. The main

tool is a Table of Content Manager where

instructors can dynamically rearrange the

chapters of their course in a tree structured

pattern (Figure 4).

Content can be added to a new node

through a text editor and upload tool in sev-

eral ways: simple typing, copy-and-paste

from a different source, as well as by up-

loading a file. In addition an instructor may

choose to designate parts of the content as

SQL (ensuring that SQL formatting is pro-

vided in Student View and making it easier

to transfer this content into the SQL Launch-

er); otherwise, all content is read as text.

Content is designated as SQL by selecting

that portion of the content and pressing the

SQL button; likewise, SQL formatting can be

removed in the same manner (Appendix A).

Figure 4. Content Manager with
options for managing a node

Finally, an instructor managing multiple

courses or sections can at any time select

another class/section to manage or view

from a dropdown list.

Classroom and User Administration Tool

Since the AEQ tool is a complex and power-

ful application which, through some of its

functions, manages resources like campus

databases, it must ensure protection from

unauthorized access. Proper security and

role management features are integrated

into the AEQ Administration Tool.

In order to provide user account support,

the AEQ application takes advantage of sev-

eral of the new Membership, Roles, and Pro-

file features built in to ASP.NET 2.0 (Mitchell

2006). These built in features are used for

authenticating, adding, creating, deleting,

and modifying user account information,

which is stored in a specific set of required

tables. These tables are created automati-

cally, and have been placed in the AEQ

back-end database. The infrastructure

created by the ASP.NET 2.0 Membership,

Roles, and Profile features is programmati-

cally used to provide the user account man-

agement functionality within the AEQ appli-

cation.

Three different roles have been defined for

the AEQ application: (1) Administrator, (2)

Instructor and (3) Student.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 6

Administrator – this role is the only one
that provides access to the Administrator

tab. Typically, there would be one single

administrator for a given installation of the

AEQ application. Administrator users are the

only ones that cannot be created through

the available functions of the AEQ applica-

tion. One would create an administrator

through the ASP.NET Web Site Administra-

tion Tool at application installation.

The main task of the administrator is to add

and remove Instructor users (Figure 5).

Figure 5. The Administrator tab

The administrator tab also provides the

functionality for dropping an instructor.

Instructor - only instructors and the ad-
ministrator have access to the User/Class

Management tab, which allows them to

create classes, import students to each

class, and create corresponding student ac-

counts. This set-up makes it possible to

start with the single administrator role when

installing the application, and then create

and remove all other needed accounts from

within the application itself.

The goal of the User/Class Management tab

is to support instructors with some of the

routine management tasks they perform at

the start and end of each semester: (1)

create a new class and accounts for the stu-

dents in that class and (2) remove a class

and all dependent information associated to

it: students and accounts as well as working

databases.

On the User/Class Management tab, the in-

structor (or administrator) can choose to

modify an existing class or create a new

class (Figure 6).

Both the Administrator and the Instructor

roles have access to the functions of the Us-

er/Class Management tab. However, while

an administrator can manage all the existing

classes in the application, instructors can

only see the classes created by themselves.

Figure 6. User/Class Management tab

Student – this is the most restrictive role in

the application. None of the functionality

related to the Administrator and Instructor

role are available to student users. Students

are limited to access the course content

viewer, the SQL Launcher and the features

in the chatroom (section 2.4).

Class Interaction Tools

As one of the main objectives in the devel-

opment of the AEQ application was to pro-

mote collaborative work among students,

and between students and instructors, the

AEQ application includes three features that

work together to achieve this goal: (1) The

Chatroom, (2) The Active Users Window and

(3) Shared Mode Support.

The Chatroom – is a chat feature that is

implemented within the main design of the

application, so that it is available at any time

no matter the kind of activity the user is

performing. The feature consists of a chat

window and a text box used to send mes-

sages, both located on the left side of the

application window. The area occupied by

this feature can be adjusted horizontally or

can be minimized to leave almost the entire

window space for other activities. Users can

send public messages and view all the mes-

sages sent by other users. Messages re-

ceived while the user is logged in are dis-

played along with the timestamp of the mes-

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 7

sage and the first and last name of the user

who sent it. The list of messages is re-

freshed automatically every two seconds in

all active user browsers.

The Active Users Window – complements

the functionality of the Chatroom by showing

the list of users currently online and their

session mode, i.e. shared or not. This list is

refreshed at two seconds intervals to main-

tain a constant, accurate report of who is

logged in. The users list is displayed in a

separate browser window that can be

dragged anywhere, resized, closed, and reo-

pened by clicking the ‘View Online Users’

link. By convention, a user is considered on-

line for 2 minute after his/her Last Activity

Date. A user without action for more than 2

minutes will be automatically removed from

the list.

Shared Mode Support – every user can
view his/her activity history by clicking on

the icon in the upper-right corner of the SQL

Launcher. The history consists of the past

executed queries and their truncated out-

come as logged in the AEQ database. Only

the first 10 rows returned by a query are

included in the history. Whenever a user

enters the shared mode he/she makes

his/her own history available to all other us-

ers who then can view, copy and test on

their own the queries just produced by their

peers. Any user entering shared mode is

automatically added to the drop-down list by

the history view list icon, and that student’s

history (since entering shared mode) is

made available. This feature is an important

part of the collaborative work support in the

AEQ application, since it allows the students

to truly share their work and experience,

while being able to critique, comment and

inquire about one another’s work and results

through the Chatroom feature. The two fea-

tures nicely complement each other in order

to provide powerful support for various types

of collaborative activity.

3. APPLICATION ARCHITECTURE

The architecture of the AEQ tool is typical for

AJAX applications. It consists of interacting

components that are, potentially, located on

three different computers (Appendix B).

The AJAX Client – consists of the Java-
Script code executed by the browser on the

end user machine. The code is downloaded

as a result of the page requests from the

AEQ Web Site, or even as a response to spe-

cific AJAX requests. The AJAX client takes

care of the immediate user interaction that

does not require the Web Server’s participa-

tion, issues background AJAX requests upon

specific user actions, receives and processes

the data returned by the Web Server. E.g.

a user click on the “Run” button in the SQL

Launcher sends the SQL query in the query

window as a parameter of an AJAX request

to the Web Server to be forwarded to the

selected target database. The query result

is returned as part of the response to the

AJAX request and is processed accordingly

by the AJAX client: display the result set in

case of success or the error message if the

query failed. The AJAX Client consists of

over 4,000 lines of JavaScript, roughly di-

vided into the same functional modules as

the application, with the addition of a shared

module that handles AJAX requests and

(typically more generic processing) that is

done by at least two modules (see Appendix

C). Each functional module performs two

general tasks: issuing requests specific to its

needs, and appropriately processing re-

turned data/messages. Shared Mode Sup-

port is the one module that relies both on

the shared AJAX functionality as well as

another module (the SQL Launcher); this is

because Shared Mode Support is a multi-

user extension of individual SQL Launcher

history.

The AEQ Web Site – is located on a cam-

pus Web Server and consists on the middle-

tier logic of the application. It receives

regular Web page or AJAX requests from the

AJAX Client, interacts with the backend

and/or target databases, and responds to

the client requests. E.g. for example, when

an AJAX request to execute an SQL

query/command is received, the AEQ Web

Site component connects to the selected

target database and submits the SQL

query/command for execution. The results

from the database are then forwarded back

to the AJAX client. The AEQ Web Site de-

pends on separate handlers for Administra-

tive Tools, SQL Launcher, Content View-

er/Manager, as well Interactive Tools; each

of these handlers relies on other classes for

specific processing. Some of these classes -

- such as DBManager, and UserEngine -- are

used throughout these handlers, and others

are more specific to the processing at hand.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 8

For example, the server-side components

and dependencies of the Administrative

Tools include the Administrator and UserMa-

nagement aspx pages (both wrapped in the

master application page), a shared handler,

and four other classes (Figure 7).

Figure 7. Dependencies and Interac-
tions of the Administrative Tools

The AEQ Backend Database – is located

on a campus database server and stores

data that is vital to the functioning of the

application (Appendix D): course lists,

course content, student/user lists, pass-

words and permissions, information about

the registered target databases and other.

Users (stored in an ASP.NET created table)

are linked to their available database con-

nections, their query history, their messages

(in the Chatroom), and their classes; classes

are linked to their content.

In addition to the three components above,

the AEQ application also interacts with a

number of target databases towards which

the user’s queries are directed. These data-

bases can rely on different types of Data-

base Management Systems, and are created

by the class instructors for the specific

teaching needs of their classes.

4. TECHNOLOGIES EMPLOYED

In order to provide a seamless user interface

and a Windows application-like user expe-

rience, the AEQ tool incorporates a number

of technologies. The application was de-

signed in ASP.NET 2.0, with server-side code

written in C#.NET. The AEQ tool relies on

an MSSQL backend database (for class and

user management, and course content).

The application is heavily dependent on AJAX

technologies, incorporating XMLHttpRe-

quest’s, Microsoft’s AJAX libraries and con-

trols, modified third party freeware AJAX

controls, and custom controls. Generally,

data is represented on and transmitted from

the server as XML, and transformed on the

client side through JavaScript and CSS.

Indeed, XML is the main vehicle of data ex-

change used throughout the application.

While, occasionally, JSON’s lightweight, con-

tained format provided the best fit for por-

tions of the application, generally the robust,

self-descriptive, easily navigable XML was

preferred. This was for several reasons:

firstly, the XML tree structure proved an

identical fit for some data used in the appli-

cation (particularly the outline-like class con-

tent structure); secondly, there is ample

support for both server and client-side navi-

gation, transformation and manipulation of

XML data; thirdly, complex XML data struc-

tures can be easily stored in and retrieved

from a database; finally, the available tools

for XML processing allow simple,

straightforward, lightweight solutions to op-

erations such as restructuring a data tree.

Also taken into consideration was the fact

that some handling of XML data would need

to be provided when retrieving data from

student and instructor databases, regardless

of the preferred exchange format, due to the

possibility that queries might either be run

on XML data columns or formatted to return

XML data.

While, as noted previously, the application

was designed to work with a MSSQL backend

database, implementation for creating and

accessing three types of databases was de-

signed: MSSQL, MySQL and Oracle. The

incorporation of a larger number of database

types in the future is a fully viable option,

simply requiring the creation of a wrapper

class for each additional type.

The AEQ tool was designed to be run in In-

ternet Explorer, however the application was

built with the future incorporation of cross-

browser compatibility in mind; this means

that browser specific JavaScript was

avoided, and, when possible, portions of the

application were built for and debugged in

multiple browsers; and, when not possible,

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 9

proper internal documentation and stub me-

thods for future development were provided.

5. EXAMINATION OF SPECIFIC

IMPLEMENTATION OF MODULES

While the base technologies employed

throughout the application were the same,

the requirements of the AEQ tool necessi-

tated significant differences in the approach-

es used for implementing each functional

module.

Each module exists independently, but is

wrapped inside the main application frame in

order to work in unison to produce the de-

sired functionality. The wrapper is an aspx

page that handles the majority of the details

associated with linking pages and functional-

ity. It is also here that the JavaScript code

for dynamic resizing of portions of the

screen, as well as most of the class interac-

tion tools, are linked. This page is not a

MasterPage, but behaves similarly to one.

SQL Launcher

The SQL Launcher was constructed as a

separate application, and later wrapped in

the framework of the main application. In

addition to the base .aspx webpage, the SQL

Launcher consists of a webhandler, where

most of the server side processing occurs,

several C# classes for managing custom

query tool exceptions and handling database

access, and JavaScript and CSS for client-

side processing and formatting.

The process for using the SQL Launcher is as

follows: after the user presses “Run”, client-

side JavaScript issues an XmlHttpRequest.

The QueryToolHandler receives this request

and calls the appropriate methods to process

it; the results (be they data, messages, or

errors) are returned to the client in an XML

format; the client transforms and formats

the data using JavaScript and CSS.

The user may choose to run queries on any

database he or she has permissions to

access by simply selecting a radio button.

The ability to access multiple database

types, such as the three for which imple-

mentation is provided, MSSQL, MySQL and

Oracle, is achieved through the existence of

an abstract class, DatabaseHandler, from

which all other, database-specific classes are

derived. This class contains abstract method

headers for a number of methods that one

would expect to find in such a class, such as

creating, altering and fetching connection

strings (Appendix E). It is then left up to

the individual classes to implement these

methods as appropriate.

While the MSSqlHandler, MySqlHandler and

OracleHandler classes provide implementa-

tion for the MSSQL, MySQL and Oracle data-

bases (respectively), the application is de-

signed to make use of polymorphism in such

a way that adding an additional type of da-

tabase would be as simple as deriving

another class from DatabaseHandler, and

including it with the project (Appendix F).

After the creation and inclusion of this new

class, the application would then be able to

access and process databases of whatever

type for which the class provided implemen-

tation. This is possible because the applica-

tion does not handle database specific ob-

jects in processing, but rather uses

DatabaseHandler objects, leaving the data-

base specific details to the derived classes.

When a user runs a query, it could potential-

ly return any combination of row-column

results, XML data, messages or errors. The

QueryTool processes these types of return

data differently in order to return pure XML

to the client. When a query results in XML

data, the result is returned unmodified.

When a query generates errors or messages,

each message or error is assigned its own

XML node; interestingly enough, Oracle re-

turns general messages (such as Print

statements) alongside of genuine error mes-

sages, so these are processed by the AEQ

tool in the order in which they are received.

For this reason, the SQL Launcher

processing of these messages, both on the

server side, and later on the client side, is

very generic: the message, whatever its

content, is simply presented to the user,

allowing its content (rather than, for in-

stance, font color or size changes) to indi-

cate its purpose. Finally, when a query re-

turns row-column data, the SQL Launcher

generates XML modeling the table structure.

Column names are preserved before the da-

ta. Each row is represented as a “Row” ele-

ment, and each cell inside that row is

represented as a “Data” element (Figure 8).

When a table contains columns of XML data

as well as other data types, the XML data is

simply inserted into the appropriate “Data”

element(s) in the return XML document.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 10

Figure 8. XML Representation of a Sim-
ple Table

For all return types, the number of rows af-

fected and the number of rows returned are

sent back to the client, and displayed to the

user (much as is done in the database

clients).

Figure 9. Result pane of

the Query Launcher after
successful execution of a query

After the XML is generated and returned by

the handler, client side JavaScript processes

and displays it in a table format in the out-

put pane of the SQL Launcher (Figure 9).

Similar to the MSSQL database interface,

XML data is previewed in its appropriate col-

umn, but can be opened for viewing in a

separate tab. As noted previously, the

number of rows returned or rows affected is

also displayed in the output pane. Further-

more, the client displays the query execution

time, along with an icon indicating whether

the execution was successful or not (green

signifying success, red signifying failure).

Content Viewer and Manager

Of all portions of the application, the Content

Viewer and Manager perhaps rely most

heavily on client-side processing and AJAX

technology, as this portion of the application

provides functionality for dynamic naviga-

tion, display, manipulation and creation of

class content. While the Viewer and Manag-

er perform very different tasks, they also

share some similar and some identical

processing, and so make use of some of the

same client and server side code (Figure

10).

Class content is stored as an XML tree in the

application MSSQL database (Appendix G);

this tree is automatically generated when

the class is created. Instructors may then

alter this initial, empty tree to create what-

ever structure best suits the class’ needs,

with but one stipulation: that actual text or

SQL content can only exist in leaf nodes.

Despite the downsides of passing potentially

large XML files from the server to many

clients simultaneously, XML seemed the

most appropriate fit for a classroom setting:

XML’s tree structure lent itself perfectly to

the tree structure of a class outline. Fur-

thermore, XML can be passed easily enough

between the server and clients, and clients

and the server; and, while not only does the

self documenting nature of XML make clear

the purpose of individual nodes in a way that

would not have been difficult to mimic using

a lighter weight data-interchange format

such as JSON, but also the clear structure

makes processing significantly simpler and

more straightforward.

On the client side, the XML tree is

represented by a tree control that can be

dynamically rearranged by dragging and

dropping from one location to another (Ap-

pendix H); every content node in the XML

tree is a node in the tree control. Instruc-

tors are provided with the functionality to

rename, reorganize, delete, edit and, of

course, create nodes; in addition to typing

or pasting text, instructors can upload files

inside a leaf node (Figure 11). Furthermore,

if an instructor feels that an error has been

made, he/she may choose the Undo or Redo

option at any time after at least one change

has been done or undone (respectively).

Each of these manipulations, additions, etc.,

alters the XML Content tree. To prevent

<ResultSet rowsAffected=0>

 <ResultTable rowsReturned=2>

 <Column name= “id” />

 <Column name= “version”/>

 <Row>

 <Data>24</Data>

 <Data>v 1.3.2</Data>

 </Row>

 <Row>

 <Data>32</Data>

 <Data>v 2.9.1</Data>

 </Row>

 </ResultTable>

</ResultSet>

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 11

what could be very excessive server traffic

(were these changes constantly sent to the

database), changes, until the instructor

chooses to save them, are not saved to the

database, and exist only on the client

browser.

Figure 10. Overview of Content Viewer
and Manager structure, showing com-

mon code and classes

Figure 11. The SQL and text editor

This functionality is made available through

a combination of generic, AJAX enabled Ja-

vaScript tree and context menu controls, an

application specific SQL and text editor, ap-

plication-specific JavaScript XML tree

processing, and a simple web handler that

retrieves from and saves to the database.

While the Content Viewer functionality is not

as complex as the Content Manager, it utiliz-

es much of the same lower level XML tree

processing and loading as does the Manag-

er; here again, the structure and self-

descriptive nature of XML matches the needs

of the application perfectly. Furthermore,

CSS and JavaScript transformation seemed

most appropriate for both the Viewer and

the Manager, as both require, at one level or

another, very similar dynamic processing,

which, combined with the modular structure

of the JavaScript code, allowed for extensive

code reuse.

The Viewer consists of two main parts: a

Table of Contents control (a tree structure,

represented by a styled HTML list, in which

content nodes are represented by their

titles, and are linked to their node content

via the node id), and the Content View.

When the Content Viewer is initially loaded,

content node titles are fetched in order to

build both the Table of Contents as well as

the main page, which will display the titles of

all first level nodes. After this, any attempt

to load content at any sub-level (either by

expanding a main level node, or by navigat-

ing via the Table of Contents) will issue an

XmlHttpRequest to the web handler to fetch

the node at that level; the exception to this

is if the data has already been loaded -- in

that case, it is merely displayed. Otherwise,

the requested XML node(s) will be fetched

from the database by the web handler, and

returned to the client. On the client side,

the returned XML will be processed and for-

matted through JavaScript and CSS.

Nodes in Content Viewer can be collapsed

and expanded at will. A collapsed node does

not lose its data (i.e. a fresh call is not

made to the server should the user expand

the node).

Classroom and User Administration

The Administration portion of the application

most resembles traditional web applications,

as it runs predominately on the server side.

Nonetheless, in order to maintain a uniform

user experience across the application, the

Administrative portion of the AEQ tool makes

use of AJAX technology where appropriate to

minimize postbacks and page refreshes (in

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 12

keeping with the Windows application-like

feel of the application).

The main purpose of the administrative tools

is to create users (instructors and students),

to create classes, and to associate users

with classes. The AEQ tool employs built-in

features of ASP.NET 2.0 to define Member-

ship, Roles and Profiles, and provides an in-

terface for easily and quickly creating users

and assigning them appropriate roles (Ad-

ministrator, Instructor, Student). Only ad-

ministrators can create and remove instruc-

tors; both administrators and instructors can

create and delete students, just as both can

create, manage and remove classes. Stu-

dents, of course, cannot create, modify or

delete other users or classes.

While instructors are created individually

(and separately from class creation and

management) by an instructor, an instructor

or administrator user can both create and

manage a class in the same work area (Fig-

ure 12).

Figure 12. Managing users associated
to a test class

Class management options which would

trigger a postback are available inside an

iFrame -- which is invisible to the user, but

allows for partial page refreshes. For in-

stance, when an instructor uploads a class-

list CSV file, a postback is triggered inside

the iFrame, which refreshes and displays the

outcome of the upload attempt; the main

page, however, does not refresh. This helps

provide a more stable, Windows-like “feel”,

as can be found elsewhere throughout the

application.

Class Interaction Tools

Three features designed to work in unison to

enhance classroom interaction are the cha-

troom, active user list, and shared mode

(Figure 13). The active user list shows not

only who is currently logged in, but also who

is working in Shared Mode; the chatroom

allows all logged in users (working in Shared

mode or otherwise) to communicate; and

Shared Mode History allows users to view

the Shared History of any user working in

Shared Mode.

Both the Chatroom and User List are AJAX

driven. The Chatroom refreshes every two

seconds to provide constant updates of user

messages. Unlike other portions of the app,

where potentially complex structures are

neatly represented as XML, chat messages

are wrapped and exchanged in JSON; JSON,

lacking the verbosity of XML, provides a ligh-

ter, cleaner transfer of data, perfect for use

in instances such as this, where there are no

nested structures or complexity of data, but

simply sets of three pieces of data (user

name, time stamp and text message).

Chat and the User List, along with the

Shared Mode option, are embedded into the

main application; this ensures that they are

always available to any logged-in user, re-

gardless of his/her activity at any given

moment. Access to Shared Mode History

(the queries run, and a subset of the first

ten results, messages, or errors returned, by

individuals working in Shared Mode) is avail-

able in the SQL Launcher. Unlike the Cha-

troom and User List, where all users can in-

teract equally and in the same way, Shared

Mode History, it should be noted, is not an

interactive workspace where multiple per-

sons can collaboratively work on a query or

queries, but rather a window in which one

can view (but not change, without importing

to one’s SQL Launcher window) another us-

er’s query and result history.

Because multiple users might be working in

shared mode at any given time, and a stu-

dent or instructor might wish to view the

Shared history of any number of these us-

ers, each user’s Shared history is displayed

in its own tab. These tabs are the Java-

Script controls used in the SQL Launcher,

and actually display alongside the Query

Tool.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 13

Figure 13. AEQ Interactive tools: User
list, Shared Mode, and the Chatroom

6. LIMITATIONS, AND LOOKING

FORWARD

The current implementation of the AEQ Tool

is a fully functional pilot version, however it

is not without its limitations. Among them

are: at present, xqueries and xpath expres-

sions do not evaluate; furthermore, while

tables, schemes, etc. can be created, al-

tered, and dropped, there is no way to di-

rectly explore or visualize database content;

administrative functions, while providing

ample support for the tasks described, do

not provide for customization of accounts,

database access for individuals and groups,

etc.; and, at present, there is no concept of

private chatrooms or shared, interactive

workspaces within the application.

Addressing these limitations is certainly a

part of the future of the AEQ Tool. Further-

more, student and instructor feedback ga-

thered through test runs of the application in

classroom settings is certain to shape priori-

ties and impact future revision, assessment

and development of the tool.

7. CONCLUSION

The AEQ tool, as a fully functional pilot ap-

plication, provides a solid base for future

refinement and development. It not only

provides an opportunity to test, refine and

enhance the specific implementation choices

made during the development of the applica-

tion, but also the concepts behind the AEQ

tool. As much as the actual building of the

application, the prospect of deploying the

application for use is a promising one, be-

cause it too will provide an opportunity to

reconsider, validate or invalidate, and, later,

perfect the approaches used in this deploy-

ment; this cycle of testing and use will, in a

very real sense, lend direction to the future

of the application. The lessons learnt in the

building and deploying of this pilot version of

the AEQ Tool will help identify the strengths

and weaknesses of the concepts and ap-

proaches used in creating the application.

This knowledge, in turn, may lead to some

of the approaches and ideas behind the tool

being reworked, transformed or even aban-

doned, just as it may lead to the extension,

enhancement and continuation of others;

regardless, it will ensure a stronger, more

reliable application that can effectively and

efficiently meet a real classroom need.

8. REFERENCES

Gibbs Matt, Wahlin Dan (2007) Professional

ASP.NET 2.0 AJAX, Wiley Publishing, Inc.

McClure Wallace B., Cate Scott, Glavich Paul,

Shoemaker Craig (2006) Beginning AJAX

with ASP.NET, Wiley Publishing, Inc.

Mitchell Scott (2006) Examining ASP.NET

2.0's Membership, Roles, and Profile - Part

3,
http://aspnet.4guysfromrolla.com/articles/

040506-1.aspx

Moore Dana, Budd Raymond, Benson Ed-

ward (2007) Professional Rich Internet Ap-

plications: AJAX and Beyond, Wiley Pub-

lishing, Inc.

Woolston Daniel (2006) Pro AJAX and the

.NET 2.0 Platform, Apress.

Zakas Nicholas C., McPeak Jeremy, Fawcett

Joe (2006) Professional AJAX, Wiley Pub-

lishing, Inc.

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 14

APPENDIX A

Content Editor with text and SQL content

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 15

APPENDIX B

APPENDIX C

The basic functional structure of the AEQ tool AJAX client (note that Shared Mode
Support borrows functionality from SQL Launcher as well as shared functions)

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 16

APPENDIX D

aspnet_Users

ApplicationId

UserId

UserName

LoweredUserName

MobileAlias

IsAnonymous

LastActivityDate

ClassContent

class_id

content_id

Classes

class_ID

class_name

Connection

connection_id

connection_string

connection_login

connection_password

connection_name

connection_type

userId

ConnectionType

type_id

name

classReference

Content

content_id

class_content

ContentChangesLog

class_id

time

content_id

FileContent

user_id

file_content

Message

message_id

UserId

message_text

message_time

ProfileTable_1

UserId

FirstName

LastName

Shared

LastUpdatedDate

SharedTime
QueryHistory

query_id

query_results

query_time

user_id

connection_id

Roles

role_id

role_name

UserClasses

class_id

user_id

role_id

Entity Relationship Diagram of AEQ backend database (ignoring ASP.NET provided
tables)

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 17

APPENDIX E

Code from the DatabaseHandler class

APPENDIX F

Sample implementation for an XYZ database

public class XYZHandler : DatabaseHandler

{

 private ArrayList messages = new ArrayList(10);

 private XYZCommand command = null;

 private XYZConnection connection = null;

 public override DbConnection createConnection(string

connectionString)

 {

 connection = new XYZConnection(connectionString);

public abstract class DatabaseHandler

{

 public event MessageEventDelegate MessageEvent;

 public abstract DbConnection createConnection(string

connectionString);

 public abstract DbCommand createCommand(string commandString);

 public abstract DbConnection getConnection();

 public abstract DbCommand getCommand();

 public abstract bool configureConnection();

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

JISAR 3 (8) Ford and Dollinger 18

APPENDIX G

Example Content XML tree, illustrating leaf Content node
(it will contain no Content nodes)

APPENDIX H

Content Manager, before and after dragging a node to a new location

c© 2010 EDSIG http://jisar.org/3/8/ April 20, 2010

