
Volume 9, Issue 1
April 2016

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. Driving Inside Sales Performance with Lead Management Systems: A

Conceptual Model

Alhassan Ohiomah, University of Ottawa

Morad Benyoucef, University of Ottawa

Pavel Andreev, University of Ottawa

16. Governance of Outsourcing: Building a Better Relationship

Ron Babin, Ryerson University

Shane Saunderson, Ryerson University

26. Exploring Relationships between the Strategic Importance of IT and the

Effectiveness of IT Security and Mobile Device Management A Comparison of

James A. Sena, California Polytechnic State University

Taryn Stanko, California Polytechnic State University

Mark Sena, Xavier University

38. Moving Beyond Coding: Why Secure Coding Should be Implemented

Mark Grover, IBM

Jeff Cummings, University of North Carolina Wilmington

Thomas Janicki, University of North Carolina Wilmington

47. Assessing Cultural Aspects of Organizations for Knowledge Management

Initiatives

Justin Fruehauf, Robert Morris University

Dwayne Lehman, Robert Morris University

55. An Expanded Analysis of Internet Dependencies by Demographic Variables

Alan R. Peslak, Penn State University

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 2

http://jisar.org; http://iscap.info

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by ISCAP, Information Systems and Computing Academic
Professionals. Publishing frequency is currently quarterly. The first date of publication was
December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not aware
of the identities of the reviewers. The initial reviews happen before the conference. At that point
papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers,
and non-journal papers. The unsettled papers are subjected to a second round of blind peer
review to establish whether they will be accepted to the journal or not. Those papers that are
deemed of sufficient quality are accepted for publication in the JISAR journal. Currently the target
acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org. Special thanks to members of AITP-EDSIG who perform the editorial and
review processes for JISAR.

2016 AITP Education Special Interest Group (EDSIG) Board of Directors

Scott Hunsinger

Appalachian State Univ
President

Leslie J. Waguespack Jr

Bentley University
Vice President

Wendy Ceccucci

Quinnipiac University
President – 2013-2014

Nita Brooks

Middle Tennessee State Univ
Director

Meg Fryling
Siena College

Director

Tom Janicki
U North Carolina Wilmington

Director

Muhammed Miah
Southern Univ New Orleans

Director

James Pomykalski
Susquehanna University

Director

Anthony Serapiglia
St. Vincent College

Director

Jason Sharp
Tarleton State University

Director

Peter Wu
Robert Morris University

Director

Lee Freeman
Univ. of Michigan - Dearborn

JISE Editor

Copyright © 2016 by the Information Systems and Computing Academic Professionals (ISCAP). Permission to make
digital or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

http://jisar.org/
mailto:editor@jisar.org
mailto:publisher@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 3

http://jisar.org; http://iscap.info

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Ronald Babin
Ryerson University

Teko Jan Bekkering
Northeastern State University

Gerald DeHondt II

Meg Fryling
Siena College

Biswadip Ghosh
Metropolitan State University of Denver

Audrey Griffin
Chowan University

Muhammed Miah
Southern University at New Orleans

Monica Parzinger
St. Mary’s University

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Bryan Reinicke
Rochester Institute of Technology

Karthikeyan Umapathy
University of North Florida

Leslie Waguespack
Bentley University

Peter Wu
Robert Morris University

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 38

http://jisar.org; http://iscap.info

Moving Beyond Coding:

Why Secure Coding Should be Implemented

Mark Grover
mjgrover@us.ibm.com

Technical Enablement Specialist, Watson University

IBM Watson Group
Durham, NC

Jeff Cummings

cummingsj@uncw.edu

Thomas Janicki
janickit@uncw.edu

Information Systems and Operations Management Dept.

University of North Carolina Wilmington
Wilmington, NC 28403

Abstract

Consistently, malicious attacks through unpatched software continues to be one of the leading causes
of security breaches year after year. Most attention has been placed on continuous patching to eliminate
any security holes in existing software. However, as more devices continue to be connected (i.e.,
Internet of Things) and entire industries move to a connected environment (e.g. healthcare), closer
attention needs to be placed on the development process, specifically implementing secure software
development guidelines. The purpose of this research is to examine the current security issues related

to inadequate focus on secure coding and to provide an overview including suggestions on how to
improve coding by focusing on security during development. In the following paper, we discuss the
need for secure coding by first evaluating current data breaches caused by software flaws followed by
a history of secure coding. This is followed by a discussion options available to developers for
implementing secure coding. We finish by providing general recommendations for incorporating secure
coding into current practices that could be adapted for both an organizational environment and higher

education.

Keywords: Software Development, Secure Coding, Hacking, Certified Ethical Hacker

1. INTRODUCTION

Companies, governments, and private individuals
are more and more vulnerable to the loss of
confidential information. This is exasperated as
companies are conducting more of their B2B, B2C
and internal applications via internet or cloud
applications. Loss is not limited to organizations

as the exposure to loss of personal information
for private citizens continues to grow

exponentially as the number of smart devices
grows (National Vulnerability Database, 2015).
While the reasons often mentioned for these
losses include poor security policies, network
intrusions, hardware swapping, vendor / supplier
lack of security policies (Patrizio, 2014), poor

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 39

http://jisar.org; http://iscap.info

software programming is often cited as how

information us ultimately stolen (Verizon
Solutions, 2014).

Much has been written to address the need for
CIO and CTO’s to address the protection of data
(Pettigrew, et al. 2010; Richardson, 2008; Zafar,
et al. 2011). This paper will review one potential
area that all software developers could undertake
to improve the quality of their coding and make
their applications more secure. Jones and Rastogi

(2004) argued as far back as 2004 for the need
for building security into the software
development life cycle.

To understand the need for secure coding, the
paper will initially review significant breaches of

data as related to software coding issues. This will
be followed by a discussion of the term and
definition of ‘secure coding’ including concepts of
what makes coding more secure. Next the
concept of certification and training in the area of
Certified Secure Programmer will be introduced.
Finally, recommendations will be made to

software developers and their supervisors will be
made.

2. DATA BREACHES

Announcements from firms experiencing a data
breach have become a daily occurrence. This

includes many of the top breaches recently
reported including JPMorgan Chase, Target,

Home Depot, SAP and numerous companies
impacted by the Heartbleed bug (see below for
additional details of each breach). Many of these
breaches can be traced back to a vulnerability

discovered in a piece of software implemented at
the breached organization. In the following
section, we will highlight a few of these recent
breaches expanding on how most were caused by
vulnerabilities in software that could have been
minimized by secure coding.

JPMorgan Chase
An attack occurring at JPMorgan Chase late last
year resulted in the compromise of 76 million
household accounts and 7 million small business

accounts. The cause of the breach has been
traced to hackers obtaining a list of applications
being run at the organization which was then

crosschecked with known vulnerabilities (Silver-
Greenberg, Goldstein & Perlroth, 2014). While
there was no evidence that financial data was
compromised, JPMorgan Chase did alert
customers that names, addresses, phone
numbers and emails were likely stolen.

Target & Home Depot

Both attacks on Target and Home Depot can
originally be tracked back to access through third-
party vendor credentials. The malware was then

loaded on the companies POS terminals which
enabled hackers to steal the customer’s credit
card information totaling 80 million and 20
million, respectively. Recent details suggest this
malware was exploiting a software vulnerability in
the operating system installed in the POS system
(Patrizio, 2014).

SAP
Recently, researchers analyzed hundreds of
companies who had SAP implementations and
found that over 95% of SAP deployments are
vulnerable to cyber security attacks. Many of

these companies also had patching windows of
over 18 months. This is critical as in 2014 alone,
SAP average more than 30 patches a month
(~391 security patches issued) (Curtis, 2015).

Heartbleed Bug
Finally, in 2014, the Heartbleed bug which

affected OpenSSL sent companies scrambling to
patch the security hole in the software with some
estimating close to 66% of active sites on the
Internet being impacted. These included
companies such as Google, Facebook, YouTube
and Amazon (Schneier, 2014).

The breaches just described include only a few
examples in which security flaws found within

software can lead to breaches. While these have
been highly publicized breaches, they are not the
only cases of breaches as the number of
vulnerabilities found in software continues to rise.

The national vulnerability database reported that,
in 2014, the category of software flaws included
over 7,900 identified vulnerabilities and at the
end May 2015, over 2,500 software flaws have
been identified causing numerous vulnerabilities
in a variety of common software used at
organizations (figures obtained from the national

vulnerability database, https://nvd.nist.gov/).

Many researchers expect vulnerabilities to
continue to increase exponentially as we connect

more and more devices. This includes anything
from medical devices (Forrester, 2015) to home
devices such as watches, activity tracker (e.g.

Fitbit) and other devices falling under “Internet of
Things” (Hesseldahl, 2015). As we expand into
these new areas yet to extensively explored, it
becomes imperative to increase the focus on
secure coding to stop vulnerabilities at the
source. The subsequent section discusses how

secure coding has been approached in the past
and what is needed into today’s environment.

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 40

http://jisar.org; http://iscap.info

3. SECURE CODING AND NEED

A review of academic journals resulted in few
articles in the area of building more secure

applications. To find a clear definition of secure
coding, one must examine practitioner material
such as the application developers’ guides and
other material distributed by the major
application platforms.

Apple’s Developer Library defines secure coding

as “the practice of writing programs that are
resistant to attack by malicious or mischievous
people or programs.” (Apple, 2014) Jim Canup,
Enterprise Security Consultant for HP’s Fortify
Software Company, defines secure coding as “a
process used to decrease risk and increase the

overall quality of code as it pertains to security.”
(Canup, 2012) Microsoft’s definition is quite
simple, “write code that can withstand attack and
use security features properly.” (Microsoft, 2014)

Combining their definitions one could define
secure coding as:

“The practice of writing code that is
resistant to attacks.”

If the leading companies understand the need for
increased concern from security in coding, why is
it not always done? According to Kenneth Van

Wyk (2003), there are three factors that work
against secure coding: “Technical factors

(underlying complexity of the task), Psychological
factors (‘mental models’), and Real-world factors
(Economic or other social factors).” The real
challenge is that coders typically work for profit

and have limited time and resources available to
complete a given task. Best intentions, and
practices, are often challenged when faced with
deadlines.

History of Secure Coding
Software development has been around for over

60 years, and this begs the question, how long
has secure coding been practiced? It appears the
appreciation for the need for secure coding only
came with the explosion of the internet and the

.dot com era. Prior to the internet most coding
efforts were for individual companies and access
by malicious outsiders to company software was

very limited.

For Microsoft, Bill Gates elevated the need for
increased secured code in early 2002. On January
15, 2002, Bill Gates sent out an email to all full-
time employees at Microsoft detailing the

company’s highest priority for the year. In the
email Bill Gates states, “Trustworthy Computing

is the highest priority for all the work we are

doing. We must lead the industry to a whole new
level of Trustworthiness in computing.” (Gates,
2002) He goes on to define “Trustworthy

Computing as computing that is available, reliable
and secure as electricity, water services and
telephony.” Gates goes on continues to list the
three key aspects as being Availability, Security,
and Privacy.

As a result of this key priority, in January 2002,

Microsoft formed the Trustworthy Computing
team which was responsible for the development
of the Microsoft Security Development Lifecycle
(SDL) (Microsoft, 2014). The Microsoft SDL
became a mandatory policy in 2004, and now is
an integral part of software development at

Microsoft. Microsoft’s then director of
Trustworthy Computing, Tim Rains said
“Organizations today simply cannot afford to
conduct business online without prioritizing
security.” (Rashid, 2013). Microsoft has been
pushing its Security Development Lifecycle since
its inception, and makes the tools and resources

freely available. A Trustworthy Computing Blog
entry titled “SDL at 10: Driving Business Vale”,
dated March 6, 2014, states that to date
Microsoft’s SDL tools have been downloaded over
1 million times. (Hall, 2014) Microsoft has even
created a version for Agile. For a timeline of
Microsoft SDL evolution, and a graphical

representation of Microsoft’s SDL, see Appendix
A.

At the same time other software firms were
venturing into more secure coding. As far back as
2002, Symantec detailed five problems (and

solutions) that “make up 90% of all security
vulnerabilities” (Wong, 2002). They are:

1) Buffer Overview - avoid by checking the
length type of input data

2) Format String vulnerabilities – avoid by
proper input validation and exception
checking

3) Authentication – use 8+ character
passwords including alphanumeric and
special characters

4) Authorization – ensure it is properly

performed, avoid falsified data, and check
for canonicalization errors (common
character set).

5) Cryptography – avoid custom-built
cryptographic algorithms

Wong (2002) continues by suggesting some best
practices for secure coding include distrusting
user input, always using input validation, and
using source code analysis to enhance security.

The article closes by saying “it would be negligent
to not build hacker resistant code.” Burnett and

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 41

http://jisar.org; http://iscap.info

Foster (2004) also addressed practices to

incorporate into all applications by examining a
particular vulnerability which is the use of client
side validation on entry of data. The challenge of

client-side validation is that it can be ‘easily
disabled or custom tools can be used to bypass
validation.’ Fortunately, more modern software
developer tools have assisted developers in
avoiding this potential vulnerability.

In an April 2002 edition of eWeek, Dennis Fisher

wrote that “CIOs, growing impatient with security
vulnerabilities, are fighting back with language in
contracts that holds software companies liable for
breaches and attacks that exploit their products”
(Fisher, 2002). The reasoning was that placing a
monetary penalty for poor coding would

effectively force companies to be more careful
when coding. Not surprisingly, this article is just
one of many placing blame on the people coding
programs for their vulnerabilities.

One of the early challenges in the first decade of
2000 was the lack of clearly written standards.

As already mentioned, Microsoft was developing
their own standard but that would not be
publically available until 2004. At that time the
solution to securing code was the use of code
reviews. The problem with code reviews was that
it “is a process without a specific deliverable to a
customer, and it often becomes a collaborative

effort – without a leader, or an owner” (Hentzen,
2002). Code review was designed to find bugs,

not to find security flaws. There was a lot of
thought being given to the need to securely code,
but consistent, tangible ways were not yet clearly
established.

In 2003 Microsoft Press published a book titled
“Writing Secure Code: Practical Strategies and
Proven Techniques for Building Secure
Applications in a Networked World.” (Howard and
LeBlanc, 2003) Recommendations include to
think like an attacker, key considerations are:

1) Software must be written to defend all points
as an attacker will choice the weakest point
for intrusion.

2) Software coding must defend against known

attacks but also consider other entry points
by intruders.

3) Software developers ‘play by the rules’ while

hackers have no rules.

It concludes with the challenge that any secure
coder should consider: “The Internet is an
incredibly complex and hostile environment, and
your applications must survive there” (Howard

and LeBlanc, 2003).

Fast forward eleven years from Bill Gates’ original

email, and secure coding is still being discussed.
In 2013 a Network World article details that
secure coding is still a challenge: “Coding

practices could use greater attention to security,
according to a survey commissioned by Microsoft
last fall. Of 2,726 respondents made up of IT pros
and application developers, 37% say their
organizations build their products with security in
mind. Of the 492 developers in the poll 61% say
they don't take advantage of risk mitigation

technologies that already exist such as address
space layout randomization (ASLR), Structured
Exception Handler Overwrite Protection (SEHOP)
and data execution prevention (DEP)” (Greene,
2013). Among the reasons cited for not using
enhanced techniques, convincing management to

spend money to implement risk mitigation
technologies was given.

As recent as 2013, a survey detailed the
emphasis on secure coding by developers
globally. It reported a peak of 79% for India
develop with secure coding in mind, down to 61%

in the United States and lows of 47% in China an
only 33% in Japan. The survey also reported that
76 percent of U.S. developers use no secure
application program process. The primary
reasons for the lack of a secure program process
were “cost at 21%, lack of support and training
at 26%, and lack of discussion of the topic at

46%” (Ward, 2013).

How to verify if secure coding was used
According to the National Security
Telecommunications and Information Systems
Security Policy (NSTISSP) #11, the United States

government requires that software products used
for national security applications be subjected to
formal evaluation prior to their use (NIAP, 2014).
This is important during the evaluation of
commercial, off-the-shelf application and
government off-the-shelf products. These
products are typically advertised as being secure,

but without third party evaluation, such claims
cannot be validated. NSTISSP attempts to ensure
a given product meets the Common Criteria
Evaluation and Validation Scheme (CCEVS)

Program as well as the Cryptographic Module
Validation Program (CMVP, 2005).

The CCEVS was created 1985 (and most recently
updated in 2012) to create a common criterion for
evaluating a given product. The Common Criteria
is composed of three parts:

 Introduction and General Model
 Security Functional Requirements,

 Security Assurance Requirements.

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 42

http://jisar.org; http://iscap.info

A key benefit of the standards is that by

implementing a common criterion, software
products can be evaluated with the same
standard. Countries participating in the Common

Criteria Scheme are Australia, New Zealand,
Canada, France, Germany, Japan, Netherlands,
Spain, UK, and the US. The purpose of using a
common criterion is that it allows software
developed in any one of these participating
countries be evaluated by these standards, and
be recognized and accepted by other member

countries.

According to the National Institute of Standards
and Technology, CMVP focuses on validation of
cryptographic modules and cryptographic
algorithm implementations (NIST). This ensures

that the implementation of cryptographic
functions adhere to stringent security standards.
The reason why this is so important is to ensure
no flaws exist in the implementation of a
cryptographic method.

3. SECURE CODING CERTIFICATION

As a response for the need for training and
certification the industry has developed
certification based on specific languages and/or
platforms. Examples of these newer certifications
are:
 The EC-Council offers the Certified Secure

Programmer in .NET, also known as ECSP.
This certification “is intended for

programmers who are responsible for
designing and building secure Windows/Web
based applications with .NET Framework.”
(EC-Council, 2014)

 Global Information Assurance Certification
(GIAC) offers three programming related
certifications. Their offerings include
certification in Java, .NET, and Web
Applications.

 The GIAC Secure Software Programmer-.NET
(GSSP-.NET) and GIAC Secure Software

Programmer-Java (GSSP-Java) certifications
require a candidate “demonstrate mastery of
the security knowledge and skills needed to
deal with common programming errors that

lead to most security problems” (GIAC,
2014).

 The GIAC Certified Web Application Defender

(GWEB) “allows candidates to demonstrate
mastery of the security knowledge and skills
needed to deal with common web application
errors that lead to most security problems.”
This certification stresses that “successful
candidates have hands-on experience using

current tools to detect and prevent Input
Validation flaws, Cross-site scripting (XSS),

and SQL Injection as well as an in-depth

understanding of authentication, access
control, and session management, their
weaknesses, and how they are best

defended” (GIAC, 2014).

International Information System Security
Certification Consortium, also known as (ISC)2,
offers a Certified Secure Software Lifecycle
Professional (CSSLP) certification. This
certification was designed to validate Software

Development Lifecycle security competencies.
The CSSLP is targeted at people involved in the
Software Development Lifecycle with at least 4
years of proven work experience. The
certification shows proficiency in “developing an
application security program in your organization,

reducing production costs and application
vulnerabilities, enhancing the credibility of your
organization and its development team, and
reducing loss of revenue and reputation due to a
breach resulting from insecure software.”
((ISC)2)

To gauge if industry has embraced certification in
hiring a search of information technology job
postings was completed in 2014. On the day of
the search there were 80,695 tech jobs listed on
DICE.com. Searching by each of the previously
mentioned certifications resulted in the following
responses:

A search for ECSP (EC Council Certified Secure

Programmer) on DICE.com resulted in 1 job
listed. Interesting the posting was to teach the
concept. A search on Monster.Com on the same
day resulted in zero job listings. An investigation

of LinkedIn detailed 82 people with the ECSP
certification.

Likewise, a search for GSSP (Global Secure
Software Programmer) on DICE.com resulted in
eight unique postings. A GWEB (Certified Web
Application Developer) resulted in four postings

while the top certification in the search was
CSSLP (Certified Secure Software Lifecycle
Professional) yielded 13 unique postings.

While there are few postings listing certifications,
it is hopeful to see that perhaps some companies
are thinking of security more in the development

life cycle process. However, this also shows a
lack of concern by organizations when it comes to
hiring developers with secure coding experience.

4. RECOMMENDATIONS

Following a review of current industry
publications and white papers, a checklist is

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 43

http://jisar.org; http://iscap.info

included below of the items to consider when

writing software that will help reduce security
concerns. These will help both those in
organizations and those instructing on coding

(e.g., higher education) a foundation to begin
incorporating secure coding in their development
process. They are a consolidation of
recommendations from: George (2013), IEEE
(2014), Mano (2015) and OWASP (2010)

1. Explicitly validate all user input

2. Authenticate all users using a mechanism

that cannot be bypassed, the default option

should be to deny access

3. Earn or Give, but never assume Trust with

suppliers or customers (offloading security

functions to a client is a lot less trustworthy)

4. Understand how integrating external

components changes your attack

mechanisms

5. Use caution with dynamic SQL Queries

6. Pay heed to complier ‘warnings’

7. Verify database permissions, especially

those with write permissions

8. Identify sensitive data and how it should be

handled, sanitize data sent to other systems

9. Design with the ability to isolate or toggle

functionality.

10. Verify access to known and tested URLs

11. Send garbage to your application as a test

12. Use Cryptography correctly

5. SUMMARY

The research demonstrates not only the need for

developers to begin considering secure coding,
but also the need for IT management to
encourage and implement secure coding
principles in their development life cycle.

In reaction to past incidents, software
development companies are beginning to

recognize that there is a need for secure coding
practices, but the adoption rate is still woefully
low. For those choosing a career in coding, a

certification seems to be a good investment.
According to a Dice.com search of “Java
programmer”, the salary ranges from $50,000 -
$120,000 per year. On average, the same job

with the addition of a secure coding certification
such as GSSP certification will earn more,
approximately $85,000 - $130,000 per year.

Writing secure code may take a little more time,
but the long term benefits outweigh the initial

time investment. The challenge is that new

developers are taught how to code for time, and

security is often viewed as something done later.
Adopting Secure Software Development Lifecycle
practices is not just best practice, but it also

makes code that is resistant to attacks.
Certification may be viewed as a measureable
way to verify a programmer’s knowledge of
secure coding practices. Secure coding is a
choice between doing something poorly or doing
it the proper, secure way. It is either you pay
now (better development) or your pay (a lot

more) later.

Additionally, by providing some high level
recommendations/checklist, we hope this paper
will encourage companies and instructors of
software developers to begin incorporating

security into software design.

6. REFERNCES

Apple, Inc. Mac Developer Library. 11 Feb. 2014.

Retrieved 8 Mar 2014.
<https://developer.apple.com/library/mac/d

ocumentation/security/conceptual/SecureCo
dingGuide/Introduction.html>.

Burnett, M., Foster, J. (2004). James Foster.
Hacking The Code: ASP.NET Web Application
Security. Rockland: Syngress Publishing,
2004. eBook Collection (EBSCOhost).

Curtis, J. (2015). “95% of SAP deployments

‘vulnerable to cyber attacks’.” ITPro.
Retrieved 8 May 2015.
http://www.itpro.co.uk/hacking/24577/95-
of-sap-deployments-vulnerable-to-cyber-
attacks

Canup, Jim (2012). "Secure Coding: Best
Practices." Info Systems Audit and Control
Association: 2012 North America Computer
Audit, Control and Security Conference
Resources.

EC-Council Inc. (2014) EC-Council Certified
Secure Programmer (ECSP) .NET. Retreived 8

Mar. 2014.

http://www.eccouncil.org/Certification/ec-
council-certified-secure-programmer-dotnet

Fisher, Dennis (2002). "Contracts getting tough
on security (Cover Story)." eWeek: The
Enterprise Newsweekly 19 Apr. 2002.
Academic Search Complete. Retrieved 6 Mar.

2014.

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 44

http://jisar.org; http://iscap.info

Forrester, A. (2015). “IEEE Issues Security

Guidelines for Medical Device Software
Development.” ExecutiveBiz. Retrieved 19
May 2015.

http://blog.executivebiz.com/2015/05/ieee-
issues-security-guidelines-for-medical-
device-software-development/

Gates, Bill (2002). Bill Gates: Trustworthy
Computing. 17 Jan. 2002. Retreived 8 Mar.
2014.
<http://www.wired.com/techbiz/media/new

s/2002/01/49826>.

George, Randy (2013). The Five Most Common
Security Pittfalls in Software Development.
Dark Reading, Retreived 3 June 2015.

http://www.darkreading.com/the-five-most-
common-security-pitfalls-in-software-

development/d/d-id/1140103?

GIAC, Inc. (2014). GIAC Secure Software
Programmer-Java (GSSP-JAVA). Retrieved 8
Mar. 2014.
http://www.giac.org/certification/secure-
software-programmer-java-gssp-java

Greene, Tim (2013) . Microsoft commits to secure

coding standard. Retreived 8 Mar. 2014.
<http://www.networkworld.com/news/2013/
051413-microsoft-secure-coding-
269733.html>.

Hall, Adrienne (2014). SDL at 10: Driving
Business Value. Retrieved 8 Mar. 2014.
<http://blogs.technet.com/b/trustworthyco

mputing/archive/2014/03/06/sdl-at-10-
driving-business-value.aspx>.

Hentzen, Shil (2002). The Software Developer's
Guide. Whitefish Bay: Hentzenwrke
Publications, 2002. eBook Collection
(EBSCOhost).

Hesseldahl, A. “A Hacker’s Eye View of the
Internet of Things.” Re/code. 7 Apr. 2015.
http://recode.net/2015/04/07/a-hackers-
eye-view-of-the-internet-of-things/

Howard, M., LeBlanc, D. (2003). Writing Secure

Code: Practical Strategies And Proven
Techniques For Building Secure Applications

In A Networked World. Redmond: Microsoft
Press, 2003. eBook Collection (EBSCOhost).
6 Mar. 2014.

IEEE (2014). Avoiding the Top 10 Software
Security Design Flaws. IEEE Center for Secure

Design. Retreived 3 June 2015

http://cybersecurity.ieee.org/images/files/im
ages/pdf/FOR_DISTRIBUTION_IEEE_Center_
for_Secure_Design_Release.pdf

Jones, R. L., & Rastogi, A. (2004). Secure coding:
building security into the software
development life cycle. Information Systems
Security, 13(5), 29-39.

Microsoft, (2014). Evolution of the Microsoft SDL.
Retrieved 8 Mar. 2014.
<http://www.microsoft.com/security/sdl/res

ources/evolution.aspx>.

—. Writing Secure Code. 8 Mar. 2014. Website. 8
Mar. 2014. <http://msdn.microsoft.com/en-

us/security/aa570401.aspx>.

NIAP (2014) CC/CEM Documentation. Retreived 8
Mar. 2014. <https://www.niap-

ccevs.org/Documents_and_Guidance/cc_doc
s.cfm>.

—. National Policy Regarding the Evaluation of
Commercial Products. 24 Mar. 2005.
Retreived 8 March 2014. <https://www.niap-
ccevs.org/NIAP_Evolution/faqs/nstissp-
11/index.cfm?&CFID=20754558&CFTOKEN=

1af2804fc368770e-57C50E2A-B120-B58D-
2EF63ACFF8A8F107>.

NIST (2009). Security Management & Assurance.
Retreived 8 Mar. 2014.
<http://csrc.nist.gov/groups/STM/index.htm
l>.

OWASP (2010). OWASP Top 10 Application

Security Risks – 2010. Retrieved 3 June
2015.
https://www.dropbox.com/home/Secure%2
0Software%20Development?preview=OWA
SP_T10_-_2010_rc1.pdf

Patrizio, A. “Home Depot, Target breaches
exploited Windows XP flaw, report says.”
NetworkWorld. 18 Sep. 2014.
http://www.networkworld.com/article/2685

295/microsoft-subnet/home-depot-target-
breaches-exploited-windows-xp-flaw-
report-says.html

Paul, M. (2015). White Paper VIII: Software

Security in a Flat World. ICS2, Retrieved 3
June 2015. https://www.isc2.org/csslp-
whitepaper.aspx

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 45

http://jisar.org; http://iscap.info

Pettigrew, J., Ryan, J., Salous, K., & Mazzuchi, T.

(2010). Decision-Making by Effective
Information Security Managers. In
Proceedings of the 5th International

Conference on Information Warfare and
Security.

Rashid, Fahmida Y. (2013). Microsoft Talks
Secure Coding Practices, Standards at
Security Development Conference. Retrieved
8 Mar. 2014.
<http://www.securityweek.com/microsoft-

talks-secure-coding-practices-standards-
security-development-conference>.

Richardson, R. (2008). CSI computer crime and
security survey. Computer Security Institute,

1, 1-30.

Schneier, B. “Heartbleed.” Schneier on Security.

9 Apr. 2014.
https://www.schneier.com/blog/archives/2
014/04/heartbleed.html

Silver-Greenberg, J., Goldstein, M., & Perlroth, N.

“JPMorgan Chase Hacking Affects 76 Million
Households.” New York Times. 2 Oct. 2014.

http://dealbook.nytimes.com/2014/10/02/j
pmorgan-discovers-further-cyber-security-
issues/?_php=true&_type=blogs&_r=1

Van Wyk, K. R. (2003). Secure coding: principles
and practices. O'Reilly Media, Inc.".

Verizon Solutions, (2014). Verizon 2014 data

breach investigations report.
http://verizon.com.

Ward, Keith. (2013) Study: Majority of U.S.
Developers Use No Secure Coding Processes.
Retrieved 8 Mar. 2014.
<http://visualstudiomagazine.com/articles/2
013/07/16/majority-of-us-devs-dont-

practice-secure-coding.aspx>.

Wong, David. (2002) Secure Coding. Retrieved 8
Mar. 2014.

<http://www.symantec.com/connect/articles
/secure-coding>.

Zafar, Humayun, Myung Ko, and Kweku-Muata

Osei-Bryson. (2011) "Does a CIO Matter?
Investigating the Impact of IT Security
Breaches on Firm Performance Using Tobin's
q." 44th Annual Hawaii International
Conference on System Sciences (HICSS).

http://jisar.org/

Journal of Information Systems Applied Research (JISAR) 9(1)
ISSN: 1946-1836 April 2016

©2016 ISCAP (Information Systems and Computing Academic Professionals Page 46

http://jisar.org; http://iscap.info

Appendix A

Microsoft SDL / Evolution & Timeline

Security Development Lifecycle:

http://jisar.org/

