

©2014 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.jisar.org

Volume 7, Issue 2
May 2014

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. Taxonomy of Common Software Testing Terminology: Framework for Key

Software Engineering Testing Concepts

Robert F. Roggio, University of North Florida

Jamie S. Gordon, University of North Florida

James R. Comer, Texas Christian University

13. Microsoft vs Apple: Which is Great by Choice?

James A. Sena, California Polytechnic State University

Eric Olsen, California Polytechnic State University

29. Information Security in Nonprofits: A First Glance at the State of Security in

Two Illinois Regions

Thomas R. Imboden, Southern Illinois University

Jeremy N. Phillips, West Chester University

J. Drew Seib, Murray State University

Susan R. Florentino, West Chester University

39. A Comparison of Software Testing Using the Object-Oriented Paradigm and

Traditional Testing

Jamie S. Gordon, University of North Florida

Robert F. Roggio. University of North Florida

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org - www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing frequency
is currently quarterly. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not aware
of the identities of the reviewers. The initial reviews happen before the conference. At that point
papers are divided into award papers (top 15%), other journal papers (top 30%), unsettled papers,
and non-journal papers. The unsettled papers are subjected to a second round of blind peer
review to establish whether they will be accepted to the journal or not. Those papers that are
deemed of sufficient quality are accepted for publication in the JISAR journal. Currently the target
acceptance rate for the journal is about 40%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2014 AITP Education Special Interest Group (EDSIG) Board of Directors

Wendy Ceccucci

Quinnipiac University

President – 2013-2014

Scott Hunsinger

Appalachian State Univ

Vice President

Alan Peslak

Penn State University

President 2011-2012

Jeffry Babb
West Texas A&M

Membership Director

Michael Smith
Georgia Institute of Technology

Secretary

George Nezlek
Univ of North Carolina
Wilmington -Treasurer

Eric Bremier
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Muhammed Miah
Southern Univ New Orleans

Director

Leslie J. Waguespack Jr
Bentley University

Director

Peter Wu
Robert Morris University

Director

S. E. Kruck
James Madison University

JISE Editor

 Nita Adams
State of Illinois (retired)

FITE Liaison

Copyright © 2014 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor, editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org - www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Jeffry Babb
West Texas A&M University

Wendy Ceccucci
Quinnipiac University

Gerald DeHondt II

Janet Helwig
Dominican University

James Lawler
Pace University

Muhammed Miah
Southern University at New Orleans

George Nezlek
University of North Carolina Wilmington

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Li-Jen Shannon
Sam Houston State University

Karthikeyan Umapathy
University of North Florida

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org - www.jisar.org

Taxonomy of Common Software Testing

Terminology: Framework for Key Software
Engineering Testing Concepts

Robert F. Roggio

broggio@unf.edu

Jamie S. Gordon
jamie.s.gordon@unf.edu

School of Computing

University of North Florida
Jacksonville, FL 32224, United States

James R. Comer

j.comer@tcu.edu

Computer Science Department
Texas Christian University

Fort Worth, TX 76129, United States

Abstract

Most accredited computing programs have at least a single course addressing a software development
process. These courses typically include a discussion of fundamental concepts and terminology that
includes software testing. While many key concepts are in common use, terms describing testing are

often misunderstood, misused, and misguided. The purpose of this paper is to provide a framework for
commonly used and misused terminology central to software testing, and also to demonstrate their
application in three common classes of testing: static and dynamic testing, black box and white box
testing, and verification, validation, and acceptance testing.

Keywords: software testing, static and dynamic testing, black box and white box testing.

 SOFTWARE TESTING

Background
The term, software testing, often evokes
conflicting understandings of what is meant. What
is being tested, what is a test, who performs the
tests, and what is a “tester”? Additionally, what is

the difference between a program having a fault,
or error, or failure, or defect, and what are the
various kinds of tests and what are their

similarities and differences? The authors of this
paper feel that a basic understanding of these
principals is essential in order to provide a
framework of terminology when software
engineers – or, for that matter, any stakeholder,
discusses the subject. Is it possible to talk about
an essential activity, such as testing, such that all

participants have a consistent understanding of
the meaning? Sadly, rarely is this the case, as
evidenced by Naik and Tripathy, Galin, and

mailto:broggio@unf.edu

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org - www.jisar.org

others. (Niak & Tripathy, 2008) (Galin, 2004)
(Juran, 2000) It seems as if one must define
context before positive conversation may ensue.
Thus, the effort to develop a common base of

understanding appears to have merit.
Interestingly, the importance of a paper on
essential concepts arose during development of
another paper that sought to address differences
between traditional testing procedures and
object-oriented testing procedures. While
discussing the subject of testing, the authors

noted different understandings, and perceptions,
of many commonly used terms. Humbling as it
was, this was the reality that prompted the
development of the current paper.

Definition of Software Testing

Software testing is a verification process for the
assessment of software quality and a process for
achieving that quality (Naik & Tripathy, 2013).
Interestingly, software testing is used to support
the interests of all stakeholders of an application.
In particular, software testing is essential for:
 end-users to determine whether developed

or otherwise maintained software meets
specifications,

 developers to ensure that the code
successfully implements a credible design,

 designers to ensure that their solution is
one that meets specifications,

 and, to testers, to ensure that products to

be delivered do indeed meet the client’s
needs.

Moreover, stakeholders include:
 customer service representatives who are

often charged with responding to clients

who 'call' to communicate a malfunction,
 and, to administration and finance

individuals who may bill clients for software
provided.

The list is endless and all have a vested interest
in what is called - 'testing.'

Given this backdrop, it should be clear that

different levels of testing need to be done by
various stakeholders at different times (during or
subsequent to development). To do so requires
that procedures be designed to uncover issues -
all with various views of outcomes. Thus, in order
to frame this paper, the authors have limited the

treatment of testing to those stakeholders whose
main concern is the design, implementation
(programming), and end user testing.
Please also note that while the categories are
indeed different in many respects and hold
different meanings for different stakeholders,

there is considerable overlap. The specific
workplace for software development will no doubt
have its own vocabulary in addressing the world
of software testing. To begin, it is important to

establish a basic set of definitions.

 TESTING TERMINOLOBY

Terms
Four useful and related terms, are frequently
encountered when dealing with events that occur

when software fails to perform as expected (Niak
& Tripathy, 2008). References to these terms:
failure, error, fault, and defect are common in
the industry; yet, unfortunately, although their

means are related, they have different
interpretations among practitioners. As an

overview:
 A failure is defined as a behavior exhibited

by a system that does not match what has
been described in specifications.

 An error is an incorrect system state which
could lead to a failure.

 A fault is the cause of an error. In general

a fault leads to an error which leads to a
failure, although not strictly so (Naik &
Tripathy, 2013).

 A defect, also according to Niak & Tripathy,
refers to a design issue that leads to faults,
although this is not as strict a definition

(Niak & Tripathy, 2008).

Similar to Niak and Tripathy’s terminology
framework may be found in Galin. (Galin, 2004)
His approach is very similar to that of Niak and
Tripathy. Stressing that as practitioners we are
mainly interested in software failures that disrupt

or interrupt the use of software, he asserts that
we must examine the relationship between
software faults and failures. (Galin, 2004)

Galin begins with the simplest term, software
error and offers that this can be a simple
grammatical error in a line of code or a logical

error in carrying out one or more of the client’s

requirements. But, once stated, Galin continues
to point out that not all software errors become
software faults. A software error may indeed
cause improper functioning of the software in
general or in a specific application but in other
instances, the error may not cause a problem in

the software as a whole; sometimes “part of
these cases … the fault may be corrected or
“neutralized” by subsequent code lines.” (Galin,
2004)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org - www.jisar.org

Galin goes on to assert that we are interested in
the relationship between software faults and
software failures. Recognizing that not all
software faults end up as software failures, he

points out that a software failure occurs only
when it is “activated.” Thus in many executions
of a piece of software, the software fault is never
discovered because specific software executions
do not activate the software fault. Of course,
then, in these instances, no software failure is
discovered.

Galin captures his approach to software errors,
faults, and failures nicely in Figure 1.

Figure 1 Software Errors, Software Faults and
Software Failures (Galin, 2004)

Still others have different ‘takes’ on these terms.
Walia and Carver state that an error is a mistake
in the human thought process while trying to
understand given information, solve problems or
use methods and tools. (Wallia & Carver, 2012)
Software faults are defined by IEEE as “an

incorrect step, process, or data definition in
computer programs.” Favaro and her colleagues
state that a software failure is “the inability of
code to perform its required function within
specified performance requirements.” (Favaro, et
al, 2013)

Down to Earth Examples
Let's consider a very simple example to illustrate
these differences. Consider a specification that
requires a very basic computation such as
distance = rate * time. This is simple enough.
This is a basic formula given in physical science

101. Algebraically, solving for rate would be
defined as rate = distance / time. Applying this
relationship to an automated solution designed to
compute distance as a function of rate and time,

we can address the standard definitions more
closely.

Defect

Starting with design, perhaps the formula is
erroneously misunderstood and designed as
distance = rate + time (vice distance = rate *
time). Clearly, if coded incorrectly, the resulting
outputs would likely produce what might appear
as a reasonable result; that is, until software
testing is undertaken. A software developer,

tester, end user, analyst, etc. might discover that
the answers are incorrect in specific test cases.
The defect is in the design. The formula is
incorrect. The 'solution' to the requirement is

incorrectly specified and designed, and although
the program may well run to, end of job, the

defect is (hopefully) clear.

Stutzke integrates treatment of these terms by
defining a defect as “An observation of incorrect
behavior caused by a failure or detection of a
fault.” (Stutzke, 2005) The failure in this case is
an incorrect result (discovered during testing)

and is the manifestation of a fault or incorrect
result; Stutzke goes on to point out that the fault
is an error that could cause a program to fail or
potential failure. He defines error as the amount
by which the result is incorrect.

Error

The failure was the production of an incorrect
system state: the producing of an incorrect
value. The state of the system is now incorrect.
For the distance = rate + time, the resultant state
of distance is incorrect.

Stutzke cites that an error can be the simple
result of a misunderstanding. He cites the fault-
tolerance discipline that addresses these terms:
in Fault Tolerance the discipline distinguishes
between human action (a mistake), the
manifestation or result of the mistake (hardware
or software fault), the specific result of the fault

(a failure), and the amount by which the result is

incorrect (the error). Again, the defect is the
observation caused by the failure (event) or
detection of a fault.

Fault
The fault is the cause of the error which was a

design defect leading to this fault. A fault led to
a failure, the incorrect result discovered by
testing. The fault here is implementing the design
defect (distance = rate + time) which manifests
itself in the detection of a failure.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org - www.jisar.org

Failure
It is commonplace to say the fault (cause of the
error) led to a failure, where the failure in our
example is the behavior of the application (adding

rate to time in lieu of multiplying rate by time)
during run time to produce the expected result.
The production of an unexpected result points out
a fault.

Conclusion
While all this might at first glance appear to be

unimportant, the differences between discovering
errors in design as opposed to discovering failures
in implementation are quite significant from a
cost perspective. Thus, realizing that a software

defect is a design issue vis' a vis' one associated
with implementation can affect the overall

development and testing processes and can
negatively impact the understanding of what the
engineering of software really means.

It is important for a software engineer to have a
commonly accepted set of terminology for
communications, which is central to modern

software development practices. To successfully
communicate, we need a common language.
Precision in identifying root causes of software
errors (design defect, implementation fault, etc.)
is essential to good software development
practices so that proper best practices can

appropriately address the wide-ranging origins of

software errors.

 TYPES OF TESTING

Software testing can be classified into many
subcategories, often depending on one’s

perspective and often based on terms in common
use in one’s working environment. According to
Software Test Engineering @ Microsoft, a number
of test categories arises from the breaking down
of work items in a workplace. This paper suggests
a list that includes functional testing, specification
testing, security testing, regression testing,

automation testing and beta testing. The paper

cites that the list is intentionally incomplete and
requests supplements to the list. One response
included unit/API testing, acceptance testing,
stress/load testing, performance benchmark
testing, and release testing. Still another
response included performance testing, stress

testing, interoperability testing, conformance
testing, static testing, and maintainability testing.
(blogs.msdn.com/b/chappell/archive/2004/03/2
4/95718.aspx) This diversity clearly supports that
there are simply many types of testing, and that
types of tests appear to be centered on one’s

focus or interest. Given this, the authors have
taken liberty to divide software testing into a few
different broad categories to include static and
dynamic testing, white-box and black-box

testing, and verification and validation testing.

Static and Dynamic Testing

Static Testing
In general, static testing can be performed on
both documentation (specification documents,

design documents, etc.) and source code
(pseudo-code, source programs, scripts, etc.).
(Johnson, 1996) Pressman discusses static
testing tools as those that embody tools used to

test code, specialized testing languages, and
requirements-based testing tools. (Pressman,

1997) Code-based testing tools process source
code (or a program description language) as the
primary input and undertakes several analyses
resulting in generation of test cases. They also
identify a number of poor programming practices
(identifiers defined and not used;
incompatibilities between definition and use of

attributes and more). Specialized testing
languages enable a software developer to develop
detailed test specifications and describe each test
case and the logistics needed for its execution.
Requirements-based testing tools inspect user
requirements to suggest test cases or classes of

tests to exercise the requirements. All of these

are accommodated without any execution of
code.

Certainly careful static analysis of documentation
can reveal many issues. Defects may be
discovered in the specification and/or design

stages as well, without any need for any actual
program development and subsequent execution.
For example, Structure Charts for procedural
development and many UML diagrams (class
diagrams, object diagrams, subsystem and
package diagrams, sequence and
communications diagrams) are all candidates for

testing without any 'program' execution. All of

these may well lead to the discovery of defects by
observing how, for example, a sequence of object
responsibilities (methods) are invoked in a
sequence diagram used to capture the procedural
flow in a scenario captured from a use case. Such
an analysis might lead to the movement of

responsibilities from one object to another in the
interests of good design.

Consider static analysis of requirements. Static
analysis of requirements can take place by
visually inspecting the specification document

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org - www.jisar.org

and test for sufficiency, necessity, feasibility,
completeness, and measurability. While indeed
we are reviewing specifications, tests of this
nature are static and do test the specifications.

Consider static analysis in design. Consider then
a simple sequence diagram that is used to show
the collaboration of objects and their method calls
that are 'designed' to implement a scenario in a
use case. In developing the sequence diagram, it
is reasonably easy to discover that responsibilities

assigned to an object, that is, methods, are
poorly placed. For example, good cohesive
design encourages the incidence of attributes and
the methods that process these attributes to be

located within the same object. In developing the
sequence diagram, poor design can readily show

that the methods and the data are not together.
This kind of static test can easily result in
modifying the object design so as to improve
cohesion and hence provide for a better design.
Again, this is a simple static test in tracing
through a scenario in its accommodation in OO
design. Additional static design tests include

viewing, for example, UML diagrams to determine
degree of coupling, object obsolescence,
candidates for dividing and conquering complex
objects and more.

Traditionally, static testing often addresses

programming and deals with analysis of written

code through walk-throughs and/or code
inspections that result in algorithm analysis, and
syntax or semantic checks (Nail and Tripathy,
2008). However, no actual execution is done in
this stage as 'static' testing implies. It is purely
investigation of the structure of code and

hypothesizing what might happen at run-time.
Many compilers and integrated development
environments (IDE’s) are designed to greatly
assist programmers with this process. An
example of static testing in programming is
running a static analyzer looking for unreachable
code, or 'dead code' that often arises in programs

that have been modified over the years. In cases

where programs have been maintained over a
period of many years, they may have undergone
many changes. Oftentimes a programmer must
surgically delve into existing code to add features
or correct errors without corrupting the existing
functionality. Usually the programmer is given

insufficient time to do a thorough analysis and
must modify the program for a redeployment
within often severely imposed time constraints.
The programmer must react quickly and precisely
and is not afforded the time he/she might need in
order to undertake a thorough analysis.

A static view of code may reveal shortcomings via
visual 'smells' that suggests the need for
refactoring. Code smells, in and of themselves,
are not bugs and do not necessarily lead to a non-

functioning program. They may, however indicate
weaknesses in design and may lead to code
failure in the future. Long, multi-functional
classes, methods with large numbers of
parameters and options and many more smells
suggested by Fowler may well suggest
refactoring. (Fowler, 2012)

Dynamic Testing
In contrast to static testing, dynamic testing
involves execution of a design or written code

(most dynamic testing is done on code).

Pressman states that “dynamic testing tools
interact with an executing program checking path
coverage, testing assertions about the values of
specific variables, and otherwise instrumenting
the execution flow of the program.” (Pressman,
1997) Niak and Tripathy state that dynamic
testing involves analysis of behavioral and

performance of the design and code (Naik and
Tripathy, 2008), while Schulmeyer and
MacKenzie cite that dynamic analysis methods
involve the execution of a development activity
designed to “detect errors by analyzing the
response of a product to sets of input data.”

(Schulmeyer and MacKenzie, 2000) Clearly,

desired outputs and/or ranges of output must be
known ahead of time. Too, testing is the most
frequent dynamic analysis activity. It is
interesting to note that while dynamic testing is
most often associated with code execution,
dynamic testing can be applied during

prototyping – especially during software
requirements verification and validation. While
the precise outputs are likely not always known,
it can sometimes be determined that the system
response to an input meets system requirements.

To show how broadly the principles of dynamic

testing extend, Schulmeyer includes the running

of static analysis tools as part of what he calls
Implementation Verification and the running of
dynamic analysis tools as part of Validation. We
will concentrate on dynamic testing of code.
Dynamic Testing of Code represents a very large
and encompassing set of tools for software

testing. As an example of practical dynamic
testing, consider the following real-world example
that formed a part of dynamic testing of major
programs.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org - www.jisar.org

Consider a program called Percent Execute; a
program used long ago in the U.S. Air Force. Its
purpose was to monitor the run-time behavior of
programs as part of the testing activities before

deployment of the software. The purpose of
Percent Execute was simply to discover how much
(literally) of a program was actually executed
given an input dataset. Given specific inputs (and
several different sets of inputs), just what
portions of a program were / were not executed?
Clearly, different input data would cause different

execution paths to be executed. The
methodology called for a source program to be
instrumented with source code probes (discussed
later) that were inserted into every program unit

(method, function, paragraph, module, etc.).
Afterwards, the program was re-compiled and

executed with carefully designed sets of input
data to determine what parts of the program were
being executed. Dynamic testing clearly (and
often) revealed that key parts of the executable
code were not exercised. This was disturbing
given that essential edits were discovered to go
unexecuted but were assumed to have been. For

example, edits in financial programs to ensure
financial and data integrity were sometimes
simply not executed for some input data. Without
dynamic testing, making this determination
would have been very difficult and would have
involved inspecting output files record by record

– a very labor-intensive process. Running the

instrumented program might reveal that 30% or
40% of a program was actually executed (specific
code segments executed were reported).
Naturally, all segments of the program were not
expected to run for all input test data sets, as the
program logic accommodated. But for specific

sets of inputs, key parts of the programs were
expected to run.
This is a great example of dynamic testing - run
the program and monitor its run time behavior.
Testing such programs dynamically pointed out
serious defects (design issues implemented in
code) causing errors (production of an incorrect

state); the fault was the cause of the error

(logical design resulting from poor design) and
the resulting failure arose from the resultant
behavior (manifestation of the fault(s) through
reports generated by summary data produced by
the instrumented program executed upon
program completion).

(The source code ‘probes’ are merely integer
counters in a single array. Each programming
construct (function, paragraph, method, etc.)
was instrumented to add 1 to a counter in the
array that was associated with that construct.

Upon conclusion of the program, the value of each
array element represented the total number of
times that construct was executed, ranging from
zero to a higher number. A function was

appended to the program and was executed just
prior to normal program termination. This code
accessed the array and displayed the numbers of
times each programming construct was
executed.)

Most modern IDEs offer the ability to monitor

variables and their changing values during
runtime. Students using Eclipse, NetBeans, or a
number of other popular IDEs are familiar with
these features that can track program execution

allowing one to step through a program one
statement at a time and observe how the values

of attributes change. These are further examples
of dynamic testing and support Stutzke’s
contention that dynamic analysis is the process of
“…operating a system or component under
controlled conditions to collect measurements to
determine and evaluate the characteristics and
performance of the system or component.”

(Stutzke, 2005)

Black-Box and White-Box Testing
Another grouping of test categories, not mutually
exclusive from static and dynamic testing, is
black-box and white-box testing. When creating

test cases, various sources need to be considered

such as specifications captured, perhaps, from
use cases or user stories, design documents
captured in structure charts or UML diagrams,
and actual source code or pseudo-code, captured
in a wide range of IDEs. Also, there is available
documentation.

Pressman sums up the differences between black-
box and white-box testing rather nicely: “Any
engineering product (and most other things) can
be tested in one of two ways: 1) knowing the
specified function that a product has been
designed to perform, tests can be conducted that

demonstrate each function is fully operational, at

the same time searching for errors in each
function; 2) knowing the internal workings of a
product, tests can be conducted to ensure that ‘all
gears mesh.’, that is, that internal operation
performs according to specification and all
internal components have been adequately

exercised. The first test approach is called black-
box testing and the second, white-box testing.”
(Pressman, 1997)

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org - www.jisar.org

White-box Testing
(Sometimes called structural or glass-box)
testing is done through examination and
knowledge of source code. White-box testing

examines execution flow through algorithms via
'coverage measures' such as examination of
statement coverage, path coverage and branch
coverage investigations. White-box testing, in its
many forms, monitors the internals of a program
and tracks and determines 'how' the program
executes, how much of the code is being

exercised. Also considered is how many tests
through an algorithm are necessary to assure a
minimal or acceptable level of testing, what
constitutes a minimal set of tests needed to

assure a high level of reliability, how 'robust' the
program must be and similar tests.

White-box testing considers many program /
system execution characteristics. Consider this
more closely. Recognizing that one can never
assert that a program is error-free, white-box
testing addresses factors such as how many edits
need to be included in the code to assure an

acceptable level of reliability? In particular, is the
program one that deals with safety-critical
applications, aircraft or weaponry
instrumentation, financial systems, or health
systems? How much code must be added and
tested to assure acceptable levels of reliability

and how much reliability is really needed? These

are a few of the factors whose answers are used
to determine the degree to which edits and other
checks are included in both the design and
implementation to achieve desired levels of
reliability, robustness, and fault tolerance. These
are all execution time tests and are verified

during run time.

In white-box testing, there needs to be some
assurance that code that must be executed is
indeed being executed via tests with specific input
data. In a way, it is close to but involves both
static and dynamic testing. In dynamic testing,

test results can point out programming anomalies

or areas not executed or time spent in program
components (perhaps implying that these are
candidates for optimization). But white-box
testing (in the coding sense) goes deeply into the
internals of the program, to the code itself. The
testing yields significant analyses citing

statements executed or branches not taken, or
execution paths not executed and similar low
level information to the developer. The critical
thinking is that white-box testing involves the
detailed execution analysis of the program's guts;

that is, statements, branches, paths, function
calls, method calls, and more.
While dynamic testing is used to collect
measurements and evaluate characteristics and

performance of a component, and can be seen as
part of validation, white-box testing, on the other
hand, is at the lowest level and is needed for the
developers (analyst and programmers) to
consider in assuring effective dynamic testing.

Black Box Testing

In contrast to white-box testing is black-box
testing, sometimes referred to as end-user
testing. In black-box testing, the internals of
program execution are not an issue; rather, key

concerns center on the production of the correct
output given specific inputs. Are the results

timely and accurate? And are all of the
requirements accommodated?

In black-box testing, the program is viewed as a
black box. The program must read in the inputs,
process the data, and check the outputs. While
this sounds simple, it is not. Certainly running

the test is easy, but the design of suitable test
cases may well be an onerous task as a host of
carefully designed sets of tests must be
generated, oftentimes including boundary
testing, stress testing, regression testing,
functional testing, and other related black-box

testing issues. All of these tests are designed to

determine if the application produces the correct
outputs given a variety of inputs that exercise /
test both the functional and non-functional
requirements (Kulak and Guiney, 2004).

Testing requires both functionality (outputs

produced given inputs) and non-functional testing
(system loading, reliability, robustness,
scalability, portability, maintainability, security
and more. Black-box testing is often done as part
of validation by end users, hence the reason for it
sometimes being referred to as end-user testing.

Black-box testing is done without knowledge of

the internal workings of code (Turner and Robson,
1993) Instead test cases are derived from the
specifications or design or any other
documentation that implies functionality. In this
way, black-box testing is only concerned with
what can be generated from running the

application. Defects are often discovered in
black-box testing and may be traced back to
design issues or perhaps implementation issues.
Failures (behavioral issues; the producing of
unintended results) may also be readily observed
via black-box testing. In contrast, the cause(s) of

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org - www.jisar.org

the error (fault) and the producing of an incorrect
system state (error) are more typically
discovered via white-box testing.

Verification, Validation and Acceptance
Testing
These tests reflect still another category of testing
– again, not mutually exclusive of static and
dynamic testing and black-box and white-box
testing - using terms often in common use with
different stakeholders. Verification is often

combined with another software engineering
concept known as validation. These are two
different types of testing with different goals in
mind, unlike static and dynamic testing which

both seek to find faults in code and defects in
design on the development side.

Stutzke sums up the differences between
verification and validation. He says that
verification deals with evaluation of products in a
given [development] activity “to determine both
correctness and consistency with respect to the
products and standards provided as input to that

specific activity.” Verification ensures that “you
have built it right.” In contrast, validation
confirms that the product, as provided (or as it
will be provided) will fulfill its intended use.
Validation ensures that “you built the right thing.”
(Stuzke, 2005) In more detail, consider the

following elaboration of these definitions.

Verification testing is the pursuit of establishing
that a particular phase of a software system has
satisfied the requirements which had been
decided upon before embarking on that phase
(Naik and Tripathy, 2013) Thus, verification
testing is typically white-box testing but may also

include black-box testing. Essentially, verification
is done by the developers or maintainers of
software to ensure that the software meets
requirements This is often the activity undertaken
by software developers typically during unit
testing. It follows from this that although
verification testing is generally white-box testing,

clearly the developer is interested in producing

correct outputs given specific inputs. Specifically,
the product is built right.

Validation testing is done to assure that software
meets the needs of those who intend to use it
(Naik and Tripathy, 2013). Validation testing is,

thus, often black-box testing and is concerned
with ensuring functionality. Validation testing
provides the customer confidence that the
software system is adequate for its intended use.
Essentially successful validation testing provides
assurance to the user that their expectations

have been met. Customers typically undertake
validation exercises to ensure the right thing was
built.

While verification testing is used to eliminate
defects and faults that cause error states and
visible failures, validation testing shows that
there are no failures. Stated equivalently, in
verification: programmer runs unit tests against
specifications and eliminates defects and faults
causing error states and visible failures; in

validation: end user runs tests to determine if
specific inputs result in specific outputs. Clients /
end-users run tests to ensure no failures are
experienced.

One sometimes sees the term, acceptance testing

and acceptance criteria. Acceptance criteria are
often defined by the designers in the hopes that
satisfying the criteria adequately demonstrates to
the user that their needs have been met. Also
acceptance testing is designed to help the end-
user gain confidence in the code.

4. CONCLUSIONS

The paper has provided definitions of fault,
errors, failures and defects with specific examples
to provide clarity in their use. While the paper did
not propose a study to verify the approaches

offered by researchers in the literature review,

value lies in establishing a solid basis of definition
and use of these commonly misunderstood and
misused key definitions both in the workplace and
in the classroom. Practitioners and students must
use precise definitions when referring to defects,
errors, faults, and failures.

The authors have also applied these terms to
three major categories of testing: static and
dynamic testing, white-box and black-box
testing, and verification, validation, and
acceptance testing. While there are other
categories of testing that are often unique to

specific software development methodologies,

most of these categories can easily fit within a
framework of the three testing categories
provided.

5. REFERENCES

Favaro, Francesca, M., David Jackson, and Joseph
Saleh, Software Contributions to Aircraft
Adverse Events: Case Studies and Analyses
of Recurrent Accident Patterns and
Failure Mechanisms, Reliability
Engineering & System Safety 113, May 2013.

Journal of Information Systems Applied Research (JISAR) 7(2)
ISSN: 1946-1836 May 2014

©2014 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org - www.jisar.org

Fowler, Martin, contributions by: Kent Beck, John

Brant, William Opdyke, Don Roberts,
Refactoring: Improving the Design of

Existing Code, Addison- Wesley, 2012,
ISBN: 0-201-48567-2.

Galin, Daniel, Software Quality Assurance,

Pearson / Addison Wesley, 2004 (ISBN 0-
201-70945-7), Chapter 2, What is Software
Quality?

Juran, J.M. and A. Blanton Godfrey, Juran’s

Quality Control Handbook, 5th edition,
McGraw-Hill, New York ISBN-13: 978-

0071165396, 2000.

Kulak, Daryl and Eamonn Guiney, Use Cases:
Requirements in Context, Addison Wesley,
2004, ISBN: 0-321-15498-3.

Morris S. Johnson, Jr., “A Survey of Testing

Techniques for Object-Oriented Systems,”
Proceedings of the 1996 Conference of the

Centre for Advanced Studies on Collaborative
Research (CASCON '96).

Naik, K., & Tripathy, P., Software Testing And
Quality Assurance: Theory And Practice, John
Wiley & Sons, 2008. p. 7-27.

Pressman, Roger, Software Engineering: A
Practitioner’s Approach, McGraw-Hill, 1997,
ISBN 0-07-052182-4.

Schulmeyer, C. Gordon and Garth R. MacKenzie,

Verification & Validation of Modern Software
–Intensive Systems, Prentice-Hall PTR, 2000

ISBN: 0-13-020584-2.

Stutzke, Richard D., Estimating Software-

Intensive Systems, Pearson Education Inc.,

2005 ISBN 0-201-70312-2.

Turner, C.D.; Robson, D.J., "The State-Based
Testing of Object-Oriented Programming
Conference on Software Maintenance, CSM-
93, Proceedings, 1993 ISBN 0- 8186-
4600-4.

Walia, Gursimran S., and Jeffrey C. Carver, Using

Error Abstraction and Classification to
Improve Requirement Quality: Conclusions
from a Family of Four Empirical Studies,
Springer Science + Business Media, LLC
2012.

