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Abstract 
 

 
The U.S. Army requires the evaluation of new weapon and vehicle systems through the use of 
experimental testing and vulnerability/lethality modeling & simulation. The current modeling and 
simulation methods being utilized often require significant amounts of time and subject matter 
expertise. This means that quick results cannot be provided to address new threats encountered in 

theatre. Recently, there has been an increased focus on rapid results for modeling and simulation 
efforts that can also provide accurate results. Accurately modeling the penetration and residual 
properties of a ballistic threat as it progresses through a target is an extremely important part of 
determining the effectiveness of the threat against that target. This paper proposes the application of 
artificial neural networks to the prediction of the terminal ballistics of kinetic energy projectiles. By 
shifting the computational complexity of the problem to the fitting (regression) phase of the algorithm, 

the speed of the algorithm during an analysis is improved when compared to other terminal ballistic 
models for kinetic energy projectiles. An improvement in overall analysis time can also be realized by 
removing the need for input preparation by a subject matter expert prior to using the algorithm for an 
analysis. 
 
Keywords: Kinetic Energy Projectiles, Terminal Ballistics, Artificial Neural Networks, Data Mining. 
 

 
1.  INTRODUCTION 

 

When a U.S. Soldier takes a weapon system into 
the field for the first time, that Soldier wants to 
know that the weapon system will perform as 
expected.  In order to ensure that the 

Department of Defense (DoD) acquires systems 
that are safe and effective; they test the system 
and use modeling and simulation to augment the 
results from the tests.  The DoD requires that 
Acquisition Category (ACAT) I systems undergo 
Live-Fire Test & Evaluation (LFT&E) (U.S. 

Department of Defense, 2008) to determine the 
Vulnerability/Lethality (V/L) of that system.  

Simulation models are validated to those live-
fire tests and then accredited so that they can 
be used for future studies involving that system. 
 

The focus of this research is on the development 
of an ANN that can predict the terminal ballistics 
of Kinetic Energy Projectiles (KEPs).  This paper 
provides an overview of the proposed research 
and the current progress, specifically examining 
the issue of missing data.  The paper is 

mailto:rhammell@towson.edu
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Figure 2. A shotline through a target vehicle (Dibelka, 2004) 

organized as follows: an introduction to V/L 
modeling is given in this section, followed by an 
overview of terminal ballistics in section 2.  
Section 3 describes the proposed modeling 

method and section 4 outlines the approach of 
this research. Section 5 presents current 
progress, followed by a discussion of conclusions 
and future research in the final section.  

 
 
Vulnerability/Lethality Modeling 
V/L simulation models are used to analyze the 

vulnerability of military systems against the 
lethality of weapons systems.  V/L models 
typically consist of a Computer Aided Design 
(CAD) model (figure 1) of the target system, 
engineering definitions for the systems and sub-
systems in the target, engineering inputs for the 

probability of component dysfunction given a hit 
(Pcd|h) for the target critical components, 
methodologies for determining system 
capabilities after a ballistic event, and algorithms 
for modeling the physical interaction of the 
target and the ballistic threat.  This work focuses 
on the ballistics of the physical interaction of the 

threat and the target. 
 
In V/L simulations the interaction of the target 

and threat is modeled as a shotline going 
through the target.  A ballistic interaction can 
consist of one or many shotlines depending on 
the threat of interest.  For example, a Shaped 

Charged Jet (SCJ) threat that impacts armor 
could generate Behind Armor Debris (BAD) 
which may consist of thousands of fragments, 
each one requiring its own shotline. 
Furthermore, a fragment threat could fracture 

upon impact and separate into several shotlines 
of smaller fragments. 
 
A single interaction could require many shotlines 

to fully analyze the ballistic event.  A typical 
example analysis of a target and threat could 
run twenty-six views or more, with each view 
requiring hundreds of thousands of shotlines 
(Moulsdale, 2012).  Once all of the shotlines are 
tallied for a full analysis the total count can be in 
the hundreds of millions. 

 
For each shotline, remaining system capability is 
determined based on which components are 
damaged.  Before damage can be calculated, the 

model must determine if the components were 
hit.  Determination of a hit on a component is 

performed by calculating how far the threat can 
penetrate into the target on the shotline. 
 
An example of a shotline going through a vehicle 
can be seen in figure 2.  The components that 
intersect with the shotline are considered 
“threatened” and are highlighted in the figure.    

How far along the shotline the threat can 
penetrate will determine which “threatened” 
components are actually hit.  Terminal ballistics 
models, also known as penetration models, are 
used to determine how far a projectile travels on 
a shotline.  Once the distance traveled is known, 
the critical components that were hit by the 

projectile are also known.  Due to the large 
number of shotlines and the need for accuracy, 
the calculation speed and correctness of a 
penetration model are important. 
 

On a particular shotline there can be many 
objects in the path of the projectile, so if the 
projectile perforates after impacting the first 
object on the shotline it may impact another 
object.  For each object, a terminal ballistics 
model is applied to determine if the projectile 
will perforate the object or be defeated (Deitz, 

Figure 1. A CAD target model (Deitz & Ozolins, 1989) 
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Figure 3. An APFSDS-T round (“M829”, 2012) 

Reed Jr., Klopcic, & Walbert, 2009).  The first 
impact event will use the initial inputs for the 
terminal ballistics model, and results from that 
impact are used as inputs to run the terminal 

ballistics model for subsequent impact events. 
 
Results from the terminal ballistics model are 
used to determine the damage on a critical 
component in the target.  Typically the damage 
to a critical component is determined using 
empirical models based on mass and velocity, 

hole size (function of projectile diameter), or 
energy deposited (function of mass and 
velocity).  For each of those cases, the residual 
parameters of the projectile after impact are 

needed for determination of damage (Deitz et 
al., 2009).  While it is important to accurately 

predict component perforation, it is also 
important to be accurate in predicting the 
projectile’s residual parameters since they 
determine the damage inflicted to the target and 
residual penetration capability. 
 

2.  TERMINAL BALLISTIC MODELS 

 
This research concentrates on the terminal 
ballistics of a particular threat type known as 
KEPs.  KEPs are typically launched from a gun 
system using a sabot and can be stabilized in 
flight via spinning or the use of fins.  They are 
typically made from hard and high density 

metals like steel, tungsten, or depleted uranium.  
An example KEP called an Armor Piercing Fin 
Stabilized Discarding Sabot-Tracer (APFSDS-T) 
round is shown in figure 3. 

 
There are several models that are currently used 

to predict KEP penetration. Two have been 
chosen for discussion: the Lanz-Odermatt 

model, due to its simplicity and wide spread 
usage and the Segletes Hybrid model, due to its 
broad modeling capability and correctness 
(Auten, 2012). 

 
Lanz-Odermatt 
The Lanz-Odermatt model (Lanz & Odermatt, 
2000) is an empirical model that is fit to test 
data by a Subject Matter Expert (SME).  The 
model is very fast to run since it consists of only 
a few equations, but it is not a generalized 

model.  Therefore it requires different 
coefficients of fit for different threats and target 
interactions. 
 

Segletes Hybrid Model 
The Segletes hybrid model (Segletes, 2000) is a 

phenomenological model built on the Bernoulli 
equation.  It is an accurate model, but requires 
more run time since it uses numerical 
integration to solve the partial differential 
equations associated with it. 
 

3.  PROPOSED MODELING METHOD 

 
Test data are available with respect to KEP 
penetration into various materials.  However, 
using such data with either of the current 
models described above will require significant 
computational time or will not provide a 
generalized model, or both.  This work 

investigates the use of Artificial Neural Networks 
(ANNs) to overcome these limitations. 
 
Tarassenko (1998) lists five key attributes of 
neural networks in the book “A Guide to Neural 
Computing Applications”: 

 
 Learning from Experience 

Neural networks are particularly suited to 
problems whose solution is complex and 
difficult to specify, but which provide an 
abundance of data from which a response 
can be learned. 

 
 Generalizing from Examples 

A vital attribute of any practical self-

learning system is the ability to interpolate 
from a previous learning ‘experience’.  
With careful design, a neural network can 
be trained to give the correct response to 

data that it has not previously 
encountered. 
 

 Developing Solutions Faster with less 
Reliance on Subject Matter Expertise 
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Neural networks learn by example and, 
assuming sufficient examples and an 
appropriate design, effective solutions can 
be constructed far more quickly than with 

traditional approaches, which are entirely 
reliant on experience in a particular field.  
However, neural networks are not wholly 
independent of domain expertise which 
can be invaluable in choosing the optimal 
neural network design. 
 

 Computational Efficiency 
Training a neural network is 
computationally intensive, but the 
computational requirements of using a 

fully trained neural network can be 
modest.  For very large problems, speed 

can be gained through parallel processing 
as neural networks are intrinsically parallel 
structures. 
 

 Non-Linearity 
Many other processing techniques are 
based on the theory of linear systems.  In 

contrast, neural networks can be trained 
to generate non-linear mappings, giving 
them an advantage for dealing with 
complex, real-world problems. 

 
ANNs are a common tool for performing non-
linear regression, especially when the parametric 

form of the function is unknown and when the 
number of parameters is large (Gruss & Hirsch, 
2001).  A specific type of ANN called a Multilayer 
Perceptron (MLP) has been shown to be a 
universal approximator, meaning it is capable of 
arbitrarily accurate approximation to an arbitrary 

mapping, if there are enough hidden neurons in 
the hidden layer (Gonzalez-Carrasco, Garcia-
Crespo, Ruiz-Mezcua, & Lopez-Cuadrado, 2011).  
With the appropriate parameters, a MLP should 
be able to accurately approximate the desired 
outputs.  The parameters include the inputs to 
the model, the topology of the MLP (to include 

the activation functions, number of layers, and 
number of neurons), the error function, the 
training method, and the test data. 

 
The application of a MLP for this research was 
chosen based on the work of I. Gonzalez-
Carrasco, et al. (2011), which found the 

application of MLPs to outperform Radial Basis 
Function (RBF) networks, Support Vector 
Machines (SVMs), and Recurrent Neural 
Networks (RNNs) for predicting perforation of 
steel, Depleted Uranium (DU), or Tungsten 

Heavy Alloy (WHA) KEPs against aluminum, 
steel or DU targets. 

 
4.  APPROACH 

 
This section presents the proposed research 
approach.  The general steps for ANN design 
(data preparation, determination of inputs, 
choice of learning method, choice of global 
optimization method, and use of generalization 
techniques) will be discussed in turn.  Then, the 

specific ANN architecture and initial prototype 
used in this work will be outlined. 
 
Data Preparation 

The preparation of the data for use is an 
extremely important step in developing an ANN 

model, and is often the most time consuming. 
As Tarassenko (1998) states: 
 

Artificial Neural Network projects are data 
driven, therefore there is a need to collect 
and analyze data as part of the design 
process and to train the neural network. 

This task is often time-consuming and the 
effort, resources, and time required are 
frequently underestimated. 

 
Experimental test data is inherently noisy, but 
hidden assumptions in the data collection 
methods or data processing methods could 

cause major differences in the data.  As an 
example, suppose there are four reports 
containing experimental test data, and during 
the test events for all of the reports the KEP 
fractured into smaller pieces as it perforated the 
target.  In report number 1, the residual mass is 

reported as the weight of the largest piece.  In 
report number 2, the residual mass is reported 
as the weight of all of the pieces.  In report 3, x-
ray is used to approximate the length and 
diameter of the largest few pieces, and then the 
mass is calculated using the volume and density 
of the rod material.  In report 4, a piece of the 

KEP that was embedded in the target is included 
in the residual mass calculation. 
 

The above scenario produces four similar test 
events with four different reported results.  The 
example given shows how important it will be to 
find outliers in the training data and attempt to 

track down the cause of the discrepancies so 
that they can be fixed or omitted. 
 
In order to decrease the likelihood of poor 
predictions when extrapolating it is important to 
use training data that covers the range of all 
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Figure 4. Example of poor extrapolation 

possible inputs.  Figure 4 shows an example of 
what can happen if a region of the input space is 
omitted from the training data.  The square 
marks are the data points that were used for the 

non-linear regression, the circular marks are the 
data points that were omitted, and the curved 
line shows the model predictions.  The model 
predicts the training data very well and 
accurately interpolates between the data points 
but because of the omitted data the wrong 
model was used for fitting, thus leading to poor 

extrapolation.   
 

 
The collection of experimental test data that is 

representative of the large space of possible 
input patterns and that can be used for training, 
testing, and validating the MLP, will be one of 
the more difficult tasks involved in this research 
(Fernández-Fdz & Zaera, 2008). Therefore, a 
large part of the effort for this research will be 
finding and documenting publicly available 

experimental test data for KEPs. 
 
Determination of Inputs 
Once the training data have been collected, the 
next step in the process of defining a MLP is the 

determination of inputs for the model (Walczak 

& Cerpa, 1999).  The determination of what 
inputs to use is done early in the process 
because it drastically affects other parts of the 
MLP design.  The number of inputs in a MLP is 
limited by the number of available input 
parameters in the problem, but it is possible that 
not all available input parameters should be 

utilized (Gonzalez-Carrasco, Garcia-Crespo, 
Ruiz-Mezcua, & Lopez-Cuadrado, 2008).   
 

There is often a desire to include too many 
inputs in the MLP design due to two common 
misconceptions; (1) since they learn, they will 
be able to determine what input variables are 

important, and (2) like with expert systems, as 
much domain knowledge as possible should be 
included into the system (Walczak & Cerpa, 
1999).   
 
Determination of the input parameters is 
extremely important for two primary reasons.  

The first reason is that the required number of 
data points increases with the number of input 
parameters.  The second reason is that including 
two inputs that are highly correlated introduces 

noise in the training data which can lead to a 
loss of generalization and could cause a non-

convergence of the MLP (Kapoor, Pal, & 
Chakravartty, 2005). 
 
Learning Methods 
The next step in defining the MLP involves 
picking an appropriate learning method for the 
problem class being addressed (Walczak & 

Cerpa, 1999).  The choice of learning method 
will determine how well the MLP will learn the 
patterns that it is being taught and includes the 
learning algorithm, error function, learning rate, 
and other optional methodologies.  The 
optimization algorithms used for learning fall 
into two categories: direct (gradient-free) 

methods or gradient methods. 
 
Direct methods use only the function values 
themselves to find the optima in question.  
Examples of direct methods include simulated 
annealing, perturbation methods, or genetic 

algorithms.  The advantages of direct methods 
are that there is no need to derive or compute 
gradients and that the methods can find a global 
optimum.  The disadvantages are that they can 
take too many iterations to converge to a 
solution and although they can come to a 
solution close to a global optimum, there is no 

guarantee that they will come to that exact 
solution.   
 

Gradient methods use the gradient of the 
function to determine the optima in question and 
can be further defined as 1st or 2nd order.  
Examples of gradient methods include gradient 

descent, Newton method, Gauss-Newton 
method, and Levenberg-Marquardt method.  The 
primary difference between a 1st order and 2nd 
order method is the required number of 
iterations prior to convergence and speed of 
calculation. 1st order methods only need to 
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calculate the 1st derivative of the function which 
requires less calculation time, but may take a 
less directed approach to finding the optimum.  
2nd order methods require longer to calculate 2nd 

derivatives or the Hessian matrix, but take a 
more direct approach to finding the optimum 
(Snyman, 2005). 
 

 
Any of the example optimization methods can be 
used to find a minimum of an error function, 
however a global minimum for the error function 

is not guaranteed. A hybrid of the two methods 

will be used for this research and will be 
discussed in the next section. 
 
Methods for Global Optimization 
A function can have multiple optima; figure 5 

shows an example function that contains four 
maximums and three minimums, but there is 
only one global (overall) maximum and only one 
global minimum.  An optimization function that 
does not guarantee the convergence to a global 
optimum could converge to a non-optimal 
solution if other methods are not used. 

 
There are several techniques available to 
increase the likelihood of finding the global 
minimum for the error function.  One technique 

that can be used is the method of momentum; 
momentum is used to resist changes to the 
direction of the weight changes.  The main 

reason for using momentum is to reduce the 
chance of oscillating around a minimum; 
however, there is a slight chance that since 
momentum can also speed up the weight 
adjustments that it may skip over a small local 
minimum (McInerney & Dhawan, 1993).  

Momentum was not originally designed for 

finding global minimums and its probability of 
skipping a local minimum is small, so other 
techniques are better suited for this purpose. 
 

Another technique that can be used is to sample 
several random potential weights for the 
network and start with the one that has the 
lowest error.  The random sampling technique in 
no way guarantees a global minimum, but does 
help the learning process by allowing the 
network to start the learning process as close to 

a minimum solution as possible and could start 
the learning process close to a global minimum 
(Kapoor et al., 2005).  A disadvantage of this 
method is that since it is truly random it is not a 

directed approach and is therefore inefficient 
when compared to directed methods. 

 
A technique that has gained popularity is to use 
a hybrid approach that attempts to utilize the 
benefits of direct and gradient optimization 
methods together.  Since direct methods are 
traditionally better equipped to find global 
optimum, a direct method is used first to get 

close to a global optimum. Direct methods 
however are typically inefficient in converging to 
the optimum solution, so the next step is to 
apply a gradient method to assist in the 
convergence. 
 
An example of this technique is the use of 

Genetic Algorithms (GAs); they can be used to 
determine starting weights for the network prior 
to the learning process beginning.  Like with 
random sampling, using a GA does not 
guarantee a global minimum, but does increase 
the likelihood of finding it since it is a directed 

method and is more efficient than random 
sampling (McInerney & Dhawan, 1993).  Once a 
criterion has been met by the GA the learning 
process begins using a gradient method for the 
determination of the required weights to reach 
the global minimum of the error function. This 
hybrid method is what will be used for this 

research. 
 
Generalization Techniques 

As mentioned earlier, it is important to this 
research project that any model developed be a 
generalized solution. If non-representative data 
is used to train the MLP then poor extrapolation 

could occur.  But even if representative data is 
used for training, if the MLP is not properly 
designed then it could over-predict and not 
provide a smooth fitting of the training data.  As 
an example, Figure 6 shows a model that has 
been overfit to the training data.  The diagonal 

Figure 5. 3-Dimensional example of local and global 

optima (Weise, 2009) 
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Figure 6. An example of overfitting to data 

line represents a good fit to the training data 
points, but the curved line represents a solution 
that could come from a MLP if overfitting occurs. 
 

There are techniques available to increase the 
likelihood of producing a generalized solution 
and reduce the risk of overfitting.  One such 
methodology is weight decay; it penalizes large 
weights in the network and causes the weights 
in the network to converge to smaller absolute 

values.  Excessively large weights in the network 
can lead to excessive variance of the outputs 

from the network (Sarle, 2002).  Another 
method for producing a more generalized model 
is to use early stopping.  During the training 
phase a training set of data is used for learning 

as usual, but the error of a validation set of data 
is also tested. If the error of the validation data 
set begins increasing then the training is 
stopped early (Gonzalez-Carrasco, Garcia-
Crespo, Ruiz-Mezcua, & Lopez-Cuadrado, 2011). 
 
ANN Architecture 

The work of Fernández-Fdz, Puente, and Polo 
(2008) used an application of ANNs that broke 
the prediction of residual values into a two step 
process.  Instead of using one MLP for 
determining perforation and residual values, the 

task was broken up into a MLP for classification 
(perforation and non-perforation) and if 

perforation was predicted, a second MLP for 
regression of the residual values.  The benefit of 
separating the two tasks is the reduction in 
complexity of the overall networks and therefore 
an increase in the likelihood of faster 
convergence. 

 

The design for this research will follow a similar 
approach. The modeling of the terminal ballistics 
of KEPs will be broken into two sub-problems, 
one of classification (perforation or non-

perforation) and one of regression 
(determination of residual parameters). 
The effect that MLP complexity has on the 
amount of training data required can be 
demonstrated by using equations 1 and 2.  They 
provide an approximation of the number of 
training data points required for a given network 

topology, or reciprocally the size limitation of a 
network topology due to the number of training 
data points (Tarassenko, 1998).  In equation 1, 
n is the number of training data and W is the 

total number of network parameters (the 
network parameters are the weights associated 

with the connections between the nodes in the 
ANN) that must be adjusted during training. 
 
         (1) 

 
   ∑ (    )    

   
    (2) 

 
For example, for  a simple 2-layer MLP with two 
input neurons, two hidden neurons, and one 
output neuron, the recommended number of 
training data fall between nine and ninety.  For a 

3-layer MLP with six input neurons, seven 
hidden neurons in the first hidden layer, six 
hidden neurons in the second hidden layer, and 

three output neurons, the recommended number 
of training data fall between one hundred 
eighteen (118) and one thousand one hundred 
eighty (1180).  The more complex the MLP the 

more data are required for training. 
 
Initial Prototype 
Due to the simplified complexity of the problem, 
the first prototype will concentrate on the 
problem of determining perforation of a single 

plate of homogeneous armor.  After that ANN 
has been developed, the next step will be to 
develop an ANN to determine the residual 
parameters for the KEP.  The ANN will be applied 
by determining perforation for each plate along 
the shotline and utilizing the residual parameters 

for any subsequent plate along the shotline. 

 
As more test data become available, or as gaps 
in data are exposed and filled using Finite 
Element Methods (FEM), the ANNs can be refit 
and refined to better model the kinematics of 
terminal ballistics. 
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5.  CURRENT PROGRESS 
 

Experimental Test Data 
The experimental test data have been 

categorized into three main types; semi-infinite, 
finite, and limit. Semi-infinite test data comes 
from a penetration test into a material that is of 
such thickness that the area of deformation in 
front of the projectile is not expected to reach 
the rear face of the target. Finite test data 
comes from a test where the target material is 

of a finite thickness and under certain 
circumstances the projectile could perforate the 
target. Limit test data comes from many finite 
test series to determine at what velocity 

perforation would occur 50% of the time; this is 
known as the ballistic limit or v50. This research 

is currently focused on finite test data. 
 
There are many physical properties that are 
typically recorded during experimental tests, but 
some of the more typical ones are: 

 Impact parameters such as velocity, 
yaw, pitch, and total yaw. 

 Projectile properties such as length, 
diameter, density, mass, and hardness. 

 Target properties such as thickness, 
obliquity, density, and hardness. 

 Residual values such as velocity, 
projectile mass, and projectile length. 

 

XML Database 
The database being used for this research was 
designed using an XML schema. Once the 
schema was developed, a Java library called 
JAXB was used to create an object model to 
store the database and provide read and write 

access to the XML file from within a Java Swing 
GUI.  That tool is used primarily for data entry 
and querying of the XML database.  A Southwest 
Research Institute report (SwRI) (Anderson Jr., 
Morris, & Littlefield, 1992) was used to populate 
the database with its initial data set.  The report 
was digitally scanned and then processed using 

Optical Character Recognition (OCR).  The data 
from the report was cleaned up and formatted 
into something that was readable by a Java 

program.  The Java program then pulled the 
data into the database and wrote it out in the 
XML format. 
 

The seven other reports that are currently 
entered into the database were entered in by 
hand. There are currently 25 more reports of 
data awaiting entry into the database. 
 

There are 1,463 records in the database that 
contain semi-infinite test data, 644 records that 
contain finite test data, and 416 records that 
contain limit test data. 

 
Data Concerns 
Typical problems with using large amounts of 
data include incorrect recording, incorrect data 
entry, duplication, and missing parameters. 
 
Of the 644 records in the database, only 75 

contain all 15 of currently selected variables, 
451 are missing one variable, 96 are missing 
two variables, and 22 are missing three 
variables. All of the 569 that are missing values 

have at least one missing value that is a 
dependent variable. 

 
Statistical methods have been used to expose 
outlier data and subject that data to scrutiny.  
However, further efforts are required to ensure 
that the data is as clean as possible.  There are 
statistical, clustering, pattern-based, and 
association rules methods for outlier detection 

available to help with the process of cleaning the 
data (Maletic & Marcus, 2005). 
 
In order to develop the initial prototype MLP for 
classifying the data as perforation or non-
perforation, every record that is to be used for 
training must contain all required parameters. 

There is no one solution to the problem of 
missing data, but through a combination of 
intelligent replacement, imputation, or maximum 
likelihood methods, suitable values can be 
placed into the missing data locations with 
minimal detrimental effect to the ability of the 

MLP to learn the patterns in the data. The 
listwise and pairwise deletion methods will be 
avoided if possible, due to the limited availability 
of test data. 
 
One method of intelligent replacement is 
accomplished by making the common 

assumption that the diameter of the KEP does 
not change during penetration and by using 
basic geometric equations. Equation 3 can be 

used to solve for mass (m), density (ρ), radius 
(r), and length (l) as long as only one of the 
parameters are missing. 
 

 
 

 
      (3) 

 
For the remaining missing data that cannot be 
addressed using intelligent replacement, a 
determination will need to be made whether the 
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data is missing completely at random (MCAR), 
missing at random (MAR), or not missing at 
random (NMAR). The classification of how the 
data is missing has important ramifications on 

what methods are available to fill in the data 
voids (Enders, 2001). 

 
6.  CONCLUSIONS 

 
The need for an accurate and generalized 
terminal ballistic model for KEPs is important 

due to their usage in V/L models that the U.S. 
Army uses to evaluate the survivability of 
military systems.  To overcome the problems 
inherent in current modeling and simulation 

methods (slow speed, need for significant 
subject matter expertise), this paper proposes to 

use artificial neural networks to produce an 
accurate, general model for the prediction of the 
terminal ballistics of kinetic energy projectiles. 
 
The use of ANNs for regression is a well 
documented process in many fields.  This 
research proposes to use the approach in a 

specific area in which it has not been used 
before.  However, this work contributes in the 
broader context as well by examining the issue 
of missing data.  This is a problem in almost all 
data-based research, and dealing with it in an 
unbiased way is difficult but crucial.  This 
research will examine multiple ways of solving 

the issue in a practical scenario.   
 
A literature search has been completed for 
publications containing KEP experimental test 
data and that data has been partially entered 
into the database. An analysis has been 

performed to check the correctness of the 
entered data and search for outliers, but data 
voids still pose a problem. Further analysis will 
be performed to address the missing data and 
prepare the database for usage in the ANN. 
 
Future Research 

With the database prepared, the prototype ANN 
will be designed, implemented, and tested. The 
prototype ANN will immediately have usage as a 

predictor of the ballistic limit for armor and will 
serve as the classification step in the two part 
process that is proposed for this terminal 
ballistics model. 

 
The next phase of this research will include 
further development and refinement of the 
database and the design, development, and 
testing of the regression ANN that will serve as 

the second part of the terminal ballistics model 
being proposed.  
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