

©2013 EDSIG (Education Special Interest Group of the AITP) Page 1

www.aitp-edsig.org - www.jisar.org

Volume 6, Issue 2
May 2013

ISSN: 1946-1836

Journal of

Information Systems Applied Research

In this issue:

4. Creating an Audio Conferencing Application on Android Smart Phones

Jui Sun, University of North Carolina Wilmington

Ron Vetter, University of North Carolina Wilmington

Bryan Reinicke, University of North Carolina Wilmington

22. Open Source Software Volunteerism vs. Motivating Potential of Primary

Employment: Suggestions for a Research Agenda

Donald A. Carpenter, Colorado Mesa University

31. Rocky Relationships: Enterprise Resource Planning and Supply Chain

Management

Jack Crumbly, Tuskegee University

Meg Fryling, Siena College

40. The Impact of Intra-Organizational Social Networking Sites on Impression

Formation

Jeff Cummings, University of North Carolina Wilmington

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 2

www.aitp-edsig.org - www.jisar.org

The Journal of Information Systems Applied Research (JISAR) is a double-blind peer-
reviewed academic journal published by EDSIG, the Education Special Interest Group of AITP,
the Association of Information Technology Professionals (Chicago, Illinois). Publishing
frequency is currently quarterly. The first date of publication is December 1, 2008.

JISAR is published online (http://jisar.org) in connection with CONISAR, the Conference on
Information Systems Applied Research, which is also double-blind peer reviewed. Our sister
publication, the Proceedings of CONISAR, features all papers, panels, workshops, and
presentations from the conference. (http://conisar.org)

The journal acceptance review process involves a minimum of three double-blind peer reviews,
where both the reviewer is not aware of the identities of the authors and the authors are not
aware of the identities of the reviewers. The initial reviews happen before the conference. At
that point papers are divided into award papers (top 15%), other journal papers (top 30%),
unsettled papers, and non-journal papers. The unsettled papers are subjected to a second
round of blind peer review to establish whether they will be accepted to the journal or not. Those
papers that are deemed of sufficient quality are accepted for publication in the JISAR journal.
Currently the target acceptance rate for the journal is about 45%.

Questions should be addressed to the editor at editor@jisar.org or the publisher at
publisher@jisar.org.

2013 AITP Education Special Interest Group (EDSIG) Board of Directors

Wendy Ceccucci

Quinnipiac University

President - 2013

Leslie J. Waguespack Jr

Bentley University

Vice President

Alan Peslak

Penn State University

President 2011-2012

Jeffry Babb
West Texas A&M

Membership

Michael Smith
Georgia Institute of Technology

Secretary

George Nezlek
Treasurer

Eric Bremier
Siena College

Director

Nita Brooks
Middle Tennessee State Univ

Director

Scott Hunsinger
Appalachian State University

Membership Director

Muhammed Miah

Southern Univ New Orleans
Director

Peter Wu

Robert Morris University
Director

S. E. Kruck

James Madison University
JISE Editor

 Nita Adams

State of Illinois (retired)

FITE Liaison

Copyright © 2013 by the Education Special Interest Group (EDSIG) of the Association of Information Technology
Professionals (AITP). Permission to make digital or hard copies of all or part of this journal for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or commercial use. All copies
must bear this notice and full citation. Permission from the Editor is required to post to servers, redistribute to lists, or
utilize in a for-profit or commercial use. Permission requests should be sent to Scott Hunsinger, Editor,
editor@jisar.org.

mailto:editor@jisar.org
mailto:editor@jisar.org

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 3

www.aitp-edsig.org - www.jisar.org

Journal of

Information Systems Applied Research

Editors

Scott Hunsinger
Senior Editor

Appalachian State University

Thomas Janicki
Publisher

University of North Carolina Wilmington

JISAR Editorial Board

Samuel Abraham
Siena Heights University

Jeffry Babb
West Texas A&M University

Wendy Ceccucci
Quinnipiac University

Ken Corley
Appalachian State University

Gerald DeHondt II

Mark Jones
Lock Haven University

Melinda Korzaan
Middle Tennessee State University

James Lawler
Pace University

Terri Lenox
Westminster College

Michelle Louch
Robert Morris University

Cynthia Martincic
St. Vincent College

Fortune Mhlanga
Lipscomb University

Muhammed Miah
Southern University at New Orleans

George Nezlek

Alan Peslak
Penn State University

Doncho Petkov
Eastern Connecticut State University

Samuel Sambasivam
Azusa Pacific University

Bruce Saulnier
Quinnipiac University

Mark Segall
Metropolitan State University of Denver

Anthony Serapiglia
St. Vincent College

Li-Jen Shannon
Sam Houston State University

Michael Smith
Georgia Institute of Technology

Karthikeyan Umapathy
University of North Florida

Stuart Varden
Pace University

Leslie Waguespack
Bentley University

Laurie Werner
Miami University

Bruce White
Quinnipiac University

Peter Y. Wu
Robert Morris University

Ulku Yaylacicegi
University of North Carolina Wilmington

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 4

www.aitp-edsig.org - www.jisar.org

Creating an Audio Conferencing Application

on Android Smart Phones

Jui Sun
Computer Science and Information Systems

Ron Vetter

vetterr@uncw.edu
Department of Computer Science

Bryan Reinicke

reinickeb@uncw.edu
Information Systems and Operations Management

University of North Carolina Wilmington

Wilmington, NC 28403, USA

Abstract

This paper describes an approach to building an audio conferencing application for Android smart

phones. As the need for audio conferencing systems grows and smart phone market penetration
increases, the smart phone becomes a viable platform for developing conferencing applications. We
have implemented a centralized audio conferencing model and a client application which was deployed
on Android-based smart phones. Experiments for battery consumption and packet delay were carried
out to evaluate the usability of the application. The smart phones were not affected by the application
under low traffic conditions; however, the application did consume twice as much battery life under

heavy traffic conditions. The results for delay testing showed that increasing the number of
participants also resulted in longer average packet delays. Throughout the development process,
problems involving software/hardware diversification and audio signal processing were uncovered and
potential solutions were proposed. The paper provides valuable information for developing VOIP
applications on smart phones, specifically on the Android platform, and can help to direct future
development of audio conferencing systems.

Keywords: Android Development, Mobile Development, VOIP, client-server architecture

1. INTRODUCTION

Voice over IP (VOIP) audio conferencing systems
are increasingly becoming an important
application on the Internet (Freese, 2005). VOIP
introduces a possible low cost solution for long
distance multi-people communication problems
(Jaiswal and Raghav, 2004). As the need for
voice conferencing systems continues to grow,

these systems are being applied to many areas
of business, as well as in academic and social

circles (Gilson and Xia, 2007). VOIP systems are
gaining more acceptance as the software and
the quality of service of the network
environment improves (Park, 2010). A highly
attractive scenario combines VOIP with the
expanding use of smart phones (ComScore,
2012), and allows users to participate in a

mailto:vetterr@uncw.edu
mailto:reinickeb@uncw.edu

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 5

www.aitp-edsig.org - www.jisar.org

conference meeting, without having to physically
be present or incurring charges for the minutes
used on their cell phones.

A smart phone is a portable handheld device
with the capability of a personal computer and
traditional cell phone rolled into one. Smart
phones are now technically capable of delivering
sufficient performance for rich multimedia
applications and audio communication; therefore
deploying a high quality VOIP conferencing

system in smart phones is now possible.
Deploying a VOIP audio conferencing system in
smart phones provides a new opportunity for
making life more convenient for people all over

the world. Although there are many products
available in the marketplace, only a few of these

products provide an audio conferencing service
on smart phones. The lack of hardware and
software resources on many older cell phone
models is the primary reason for the limited
availability of high quality audio conferencing
systems on mobile phones.

The purpose of this paper is to explore how a
simple and extensible audio conferencing system
for smart phones can be designed and
implemented. The paper includes all of the
fundamental components of how to construct an
audio conferencing system for Android-based
mobile phones. In addition, two experiments

were designed to examine the usability of the
system. The experiments examined
battery/energy use and measured application
quality of service via delay testing.

The rest of the paper is organized as follows.

Section 2 introduces related work and the design
principles for a smart phone based audio
conferencing systems. The overall methodology
and system architecture is discussed in section
3. Section 4 discusses the experimental design,
and section 5 discusses the results and lessons
learned. Finally, section 6 provides conclusions,

and discusses future work that could improve
audio conferencing systems on smart phones.

2. BACKGROUND AND RELATED WORK

Voice over IP (VOIP) was first introduced in
1991 when Speak Freely developed internet-

based telephony software for the personal
computer (Tech-Pro, 2012). In 1996, the ITU
Telecommunication Standardization Sector (ITU-
T) defined the first version of the H.323
standard (International Telecommunications
Union, 1996). Because the Internet was a

bandwidth constrained environment, few
companies invested in the VOIP industry. In
2001, Yahoo Japan integrated the public
switched telephone network (PSTN) and VOIP

services, thereby providing a communication link
between traditional telephone service and the
Internet. In 2003, Skype was released and
proved the reliability and quality of VoIP services
in the marketplace, which convinced users of the
capability and possibility of internet telephony
(Jia, 2008).

VOIP uses two types of Internet protocols in
order to achieve end-to-end communication
functionality: Signaling Control Protocol and

Media Transport Protocol. Signaling Control
Protocol, or Call Signaling Protocol, is used to

establish and manage building and terminating
connections between users. This protocol
regulates the approach of searching for the
correct target user, building connections, and
processing data based on each user’s processing
capabilities. SIP (Session Initiation Protocol),
H.323, and MGCP (Media Gateway Control

Protocol) are instances of a Signaling Control
Protocol. The Media Transport Protocol (e.g. RTP
and RTSP) is used to facilitate the transfer of
digitalized media data after the connection is
built (Jia, 2008). In addition, management
protocols and other types of support protocols
are also used in VOIP applications.

The Session Initiation Protocol (SIP) is an ASCII-
based, application-layer control protocol that can
be used to establish, maintain, and terminate
calls between endpoints (CISCO, 2012) using
HTTP and SMTP concepts. It transfers users’

information by text, such as IP address, ports,
media ability, and codec type. The message is in
plaintext; hence the receiver can realize the
sender’s message without decoding it (Jia,
2008). SIP allows call information to be carried
across networks, and provides the ability to
manage connections between users.

In general, a SIP application should possess the
following capabilities (CISCO, 2012):

•Name translation and user location.
•Feature negotiation.
•Establish a session between the originating

and target end point.
•Handle the transfer and termination of calls.

Once the connection is established, the software
implements other protocols in order to achieve
the desired functionality.

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 6

www.aitp-edsig.org - www.jisar.org

User Agent Clients and Servers

A peer in a session is called the user agent.
From a functionality standpoint, a user agent

can be classified as either user agent client
(UAC) or user agent server (UAS). A UAC, or
Caller, initiates the request. A UAS, or Callee,
receives the request and returns the user’s
information. A SIP’s endpoint is typically able to
act as either a UAC or UAS (Jia, 2008). From an
architecture standpoint, SIP is composed of two

components: clients and a server. The clients
includes phone and gateway, and based on
different responsibilities, the server can be a
proxy server, a redirect server, a register server,

a location server, a media server, a media delay
server, and a Back-to-Back user agent (Jia,

2008; CISCO, 2012).

Figure 1 in Appendix A introduces a simple direct
call peer-to-peer SIP model. It establishes a
session without any proxy server. In this case,
John wants to call Mary. John’s machine is a
UAC and Mary’s machine is a UAS. John’s

machine calls the target via Universal Resource
Identifier (URI). The machine then sends an
“INVITE” plaintext to Mary’s machine (UAS).
Mary’s machine returns messages appropriately
(“100 Trying” and “100 Ringing”). After John’s
machine sends an ACK back to Mary’s, the two
machines transfer data through RTP/RTCP

protocol. If any user agent knows other SIP
device’s IP address or domain name, it can
process a SIP direct call.

Codecs

A Codec is the method used to encode and
decode a digital stream or signal, and there are
several types in widespread use (Isnardi,
Fielder, Goldman and Todd, 2006). One of the
first things that needed to be determined is
which Codec should be used to encode and
transmit voice data. In general, Codecs can be

defined as lossless or lossy (Wikipedia, 2012a;
Wikipedia, 2012b). Lossless codecs try to
maintain the original audio information, while

lossy codecs trade some information to achieve
other requirements. There are a number of
different Codecs available which can provide toll
quality speech under real-time transmission

(Light, 2006), which can be seen in table 1 in
Appendix A. All of these were available prior to
the release of Android OS version 2.3. It should
be noted that while, in many respects, codecs
for speech present a simpler signal than other

audio codecs (Kroon, 1995), this does not
necessarily make them simple.

Audio Conferencing

Audio conferencing software in the marketplace
commonly uses the client-server architecture.
Most server products run as a dedicated server,
rather than as peer-to-peer. The TeamSpeak
product allows users to install the server on their
own machine. The service provider provides a

location server for IP and DNS lookup. Raidcall
manages servers by itself, but provides user
client software. The user does not need to know
detailed information, such as the server address.

In addition, it extends its capability with social
networking. It brings entertainment elements

into a classic audio conferencing system.

According to the connection approach,
conferences can be grouped as “Centralized
Conferencing” and “Distributed Conferencing”
(Jia, 2008). Centralized conferencing (Figure 2,
Appendix A) require a focus server. The focus

server connects with clients independently, and
upon receiving data from one client, it delivers
the information to the remaining clients.

Energy Management

One of the most critical issues in smart phone

application design is the management of energy
consumption. Smart phones integrate the
functionality of computer and mobile phone into
one device; however, whereas a personal
computer requires a continuous energy supply, a
smart phone relies on its battery. If an

application is a burden on the phone’s battery, it
decreases the time for voice calling.

While a VOIP system communicates through a
Wi-Fi network, the associate interface is active.
Energy is consumed even if no data is
transferred. When an application is running,

program size, algorithms, and other
programming factors influence battery
consumption. As a software developer, it is

impossible to increase the battery size on a
mobile device, thus requiring the battery to be
managed via software. To address this problem,
Agarwal, Chandra et al. presented a wakeup

mechanism to solve the waste of energy by
system idling (Agarwal, Chandra, Wolman, Bahl,
Chin, Gupta, 2007) while Naeem et al proposed
an adaptive algorithm to switch codecs based on
remaining battery life (Naeem, Namboodiri,
Pensi, 2010).

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 7

www.aitp-edsig.org - www.jisar.org

Generally speaking, longer operating hours
represents higher usability. Because audio
conferencing requires that the software be
continually active, an experiment was designed

to determine how long the developed software
can be run.

3. METHODS AND SYSTEMS ARCHITECTURE

The VOIP application was developed using the
Eclipse IDE and included the development of two

software components.

The first component was the user client, which
was deployed on several Android based smart

phones (see table 2 in Appendix A). The
program acts as a caller, or UAC. It established

the connection by SIP and can:

•Send the SIP request.
•Establish and maintain a connection to the
server.

•Send and receive the audio stream.
•Terminate the connection with server.

In practice, the project uses SIP stack’s interface
and classes under the Android system. The
program does not permit any incoming SIP
request and, as a result, cannot act a UAS.

The second component was the focus server. A

focus server is the central node of the
conferencing network. All clients transfer the
audio streams through this central node. The
server has the following capabilities:

•Receive and respond to SIP requests.

•Establish and maintain the connection
between clients and itself.

•Manage participants.
•Clarify the incoming audio stream.
•Send an audio stream to the correct
endpoints.

•Receive the client termination request, and

disconnect clients.

We did not implement the focus server on a

smart phone due to energy consumption
concerns. Rather, the focus server was
deployed on a personal computer running in a
Java environment.

System Architecture

This system implemented a two-tier client-
server architecture (shown in Figure 3, Appendix
A). Clients communicate with the server

through the Internet and the server’s IP address
is the intended location of every client.

The server includes the following modules:

•ChatServer: the server’s main module which
initiates the SIPEngine module and
ChatHandler module.

•SIPEngine: listens to client calls. Once it
receives a client SIP call, it creates a specific
SIPListener instances for the client and waits

for the next SIP call.
•SIPListener: handles SIP massages with a
specific client target. The listener will close if
it receives a BYE message from its related

client. This module also adds the client to or
removes the client from the member list.

•Member: a class which stores all conference
participants’ information.

•ChatHandler: receives audio data from the
connected clients list and determines which
target it should forward to.

The client includes the following modules:

•AConPortableMain: this generates the
graphical user interface (GUI). This GUI asks
users for the server’s information and then
creates a SIPEngineClient instance for further
actions.

•SIPEngineClient: sends a SIP call, terminating

request, and interacts with all other SIP
events. Once it builds the session between
itself and the server, it then connects to the
server’s audio port by calling UDPSocket.

•UDPSocket: handles audio data transferring.
It includes the method to communicate audio

streams with the server.
•ChatHandler: the part of the GUI which
allows users to talk to the server. The user
can turn on and off the talking threads. The
model initiates InComePacket and
OutComePacket and creates threads,
respectively. Additional functionalities include

volume adjustments and the method called
from the SIPEngineClient module to leave the
conference room.

•InComePacket: a listener which listens to the
incoming packets. Once it receives a packet
it will push that data into the buffer to await
play back.

•OutComePacket: a thread class which reads
the data from the microphone’s buffer and
sends the data to the server.

From a model standpoint, the system
implements a centralized conferencing model,

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 8

www.aitp-edsig.org - www.jisar.org

which is comprised of a server and all clients
(participants). Figure 4 (Appendix A) introduces
the model and the possible message flow. The
numbers label the outgoing flow and possible

incoming flow for every smart phone.

System Operating Mechanism

The system uses a simplified SIP message to
establish, manage, and terminate sessions.
Figures 5, 6, and 7 (Appendix A) introduce the

actual mechanism for joining and leaving the
conference system.

Figure 5 presents a user client which intends to

participate in the system. In this case, no other
participants are currently in the system. Client

A sends an INVITE request to the server. The
server checks the register information, and
sends 200 OK back to the client. After the client
sends ACK to the Server, these two endpoints
can start transferring audio streams.

Figure 6 gives an instance of another user who

wants to attend the conference. It sends the
same request, and the server sends the same
response back to build the connection. Once the
connection is built, it can transfer the audio
stream between the client and server.

Figure 7 shows an example of terminating a

connection. The Client user first sends a BYE
message. Once the server receives the message,
it sends back an ACK message and closes the
connection. It also manages the member list and
notifies conference members about the leaving
client’s message.

Figure 8 shows the architecture of the system’s
modules. The SIP message is transferred
through the TCP port, and the server creates
different SIPListener objects for every connected
client. Audio streams are transferred through
the UDP port. One object of the server’s

ChatHandler is created to handle all audio
stream traffic. The Server’s ChatHandler uses a
First-in-First-out (FIFO) algorithm to forward

incoming packets. Figure 8 also shows how the
modules associate with one another.

4. EXPERIMENTAL DESIGN

In order to test the application two experiments
were carried out. One to test the application’s
ability to transmit data and the time lag
associated with this transmission and a second

to test the impact of the application on the
mobile devices’ batteries.
Table 2 and Figure 4 illustrate the clients and
server for the experiment. The “Device” column

in Table 2 distinguishes the different smart
phones, which are labeled correspondingly in
figure 3. This representation will be used when
describing both the experiments and the results.

For the experiment we used the same audio
settings in both power consumption and delay

testing. The client program read 1024 Bytes
from the microphone’s buffer and sent it to the
server. The audio data was configured as
follows:

•Audio format: PCM 16 bit

•Channel configuration: Mono
•Sample rate: 8000 Hertz

Power Consumption

In order to evaluate the usability of the system,
an experiment evaluating power consumption

was designed. Measurements were taken to
determine how long it took the system to
decrease the smart phones’ battery life from
90% to 85%. This increment was chosen as a
sample as a matter of practicality to meet time
constraints. In order to make every experiment
more consistent, smart phone screens were

turned on while testing.

Experiments included three conditions:

•Without system running: measure the power
consumption duration without running the
audio conferencing system.

•Without data transferring: connect the client
program to the server without audio data
transferring.

•Heavy data transferring: connect to the
server and keep transferring data during
measurements. Speakers and microphones
are turned on for all devices.

Smart phones B, C, D, and E from Table 2 were
used as experimental devices. Each smart phone

measure was taken three times in the three
different conditions. Smart phone A was not
used in these tests, as it was the primary phone
for one of the authors.

Delay Testing

A conferencing system can be classified as a
real-time multimedia system, and as such the
perceived quality of the system depends in part

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 9

www.aitp-edsig.org - www.jisar.org

on audience perception of audio delay. An audio
event with a huge delay would result in low
system accessibility and usability. In order to
test the system’s performance, we carried out a

delay testing experiment to determine the delay
time for a specific audio packet.

In the system implementation, an analog signal
is captured by the smart phone’s microphone.
The resulting audio data is stored in a buffer and
the system waits for the application to read the

data. The program reads a specific amount of
audio data from the buffer (in this case 1024
bytes), places the data in a packet, and sends
the packet to the server. The server forwards

the packet to the target smart phone. Once the
target smart phone receives the data packet, it

extracts the data from the buffer and writes it to
the audio track. The digital signal is then
converted to analog sound and played through
the phone’s speaker.

The experiment measured the elapsed time of
the packet between two events: the data read

from the buffer of the microphone and the same
data being received by the server. A specific 5
byte header was added to every packet for
testing, including 1 byte for the device number
and 4 bytes for a time stamp value. The
elapsed time was calculated as the current
system time minus the time stamp’s value.

Single vs. Multiple Streams

All tests were measured under two different
environments: single source audio stream and
multi-sources audio streams. The single source

audio stream transfers only the tested subject’s
audio stream. In contrast, all devices try to
transfer audio data at the same time in a multi-
sources audio stream. In general, once the
server receives a data packet, it forwards the
packet to every participating client, excluding
the packet sender. The delay testing

experiment sent every packet to the tested
smart phone, whether it was the packet’s owner
or not. In addition, the tested subject was last in

order of the server’s forwarding targets.

Smart phone A was the test subject in this
experiment. Smart phones B, C, D, and E were

participants in the testing network. For the
single source audio stream network, 100 and
1000 packets were collected and measured,
respectively. For the multi-source audio stream
network, 100 packets were collected and
measured. Each condition was tested 5 times.

5. RESULTS AND LESSONS LEARNED

Two separate tests were conducted to determine
the impact of the system on battery life and

latency of the audio traffic over a network.
These results are presented separately, followed
by the lessons learned in the process of building
the system.

Battery Consumption

Figure 9 in Appendix A provides a graphical
representation of the results from the battery
consumption test. As the figure shows, when
the application is running, but not transferring

data, there is very little impact on battery
performance. This is not unexpected, as the

client application only maintains a TCP
connection with the server, and an open UDP
port for incoming packets.

Under conditions of heavy data, there is a
noticeable impact on battery life. Based on the
results shown in figure 9, the application

requires roughly half the time to reduce the
available battery life from 90% to 85%. Based
on this, we can project that a phone running this
application would drain it’s battery it a little less
than 5.3 hours. This assumes constant traffic
levels, and could obviously vary based on other
factors.

Delay Testing

The purpose of this experiment was to test the
system’s multi-user processing capability. The
test measured the additional delay when a new

participant joins the conference room, and was
run under three conditions.

The first condition was with a single audio
stream and a sample size of 100 packets for the
audio stream. As expected, the delay time to
add a participant grew as the number of

conference call participants grew, though the
average was still very low. One other factor
illustrated by this test was that network traffic at

different times appears to have an impact on the
delays. As this was not part of the experiment,
data was not collected on this factor, though it
would likely explain the variation in the results.

Results from this test are shown in figure 10 in
Appendix A.

In the second condition, the sample size was
increased from 100 to 1,000 packets of data.
Once the sample size was increased to 1,000

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 10

www.aitp-edsig.org - www.jisar.org

packets, the delay time grows more than twenty
times the 100 packet cases. This significant
change is caused by system data processing
speed. In the system, both the client and server

program implemented FIFO as the audio data
processing policy. If the packet receiver’s
reading speed is too slow, more and more
incoming data will remain in the buffer. Once
again, the congestion on the network itself likely
played a role in the test results. The results
from this test can be seen in figure 11 in

Appendix A.

The final test condition was with a sample size of
100 packets, but with multiple sources of the

audio stream, rather than a single source.
Under these conditions, the average delay

ballooned to over 2.5 seconds, and went as high
as 3.9 seconds. This delay would be noticeable
to participants in the audio conference.
Complete results are shown in figure 12.

A design defect caused a reading speed
problem, particularly in the final test condition.

The program is designed to receive a packet and
write that data into the audio track. These two
events occur sequentially, so in order to receive
a new packet, the thread has to wait for the
program to call the write() method to write the
buffer to the track. Calling this method causes
additional overhead and decreases the speed of

reading packets from the socket. The design of
the program should call these two methods in
different threads. By implementing two threads,
receiving data and writing tracks become two
independent events which should increase the
speed of reading data.

Lessons Learned

One of the primary issues with the development
of this system revolved around issues with the
Android OS itself. To delve into this area, some
explanation is required.

One of the primary difficulties in the
development for the client application came from

implementing the SIP functionality. These could
have been resolved by using either the library
provided in the android.net sip package, or the
library provided in the android.net.rtp package.

Using these libraries would have eased
development, as this would have negated the
need to design the low level audio I/O.

The reason these were not implemented is that
they require different API levels (9 and 12

respectively). Different API levels are not
available to every version of Android. The API
levels available to different versions of Android
are presented in table 3 in Appendix A. One of

the goals for this project was to implement a
system that would be available on multiple
versions of Android, which required working at a
significantly lower API level. This is because the
majority of Android devices do not, and cannot,
run the latest version of the Android OS. In
fact, when the discovery of the libraries was

made, an attempt was made to upgrade the OS
on the devices used in this experiment.
However, this was not possible – the devices
would not support newer versions of the

operating system.

There were also problems resulting from using
open source libraries for the server and client
software developed. Specifically, some of the
open source projects are not well documented,
which makes them difficult to implement,
especially when interoperability is required. A
great deal of the open source software was

created in C/C++, which requires additional time
to research how this native code operates, and
how it must be embedded using the Android
NDK toolset.

Another problem was hardware diversification.
This project used multiple devices to reflect the

fact that there are multiple hardware vendors
that produce Android handsets. However, each
hardware vender has different settings for their
audio devices. Also, the minimum buffer size
required for the relative Android audio record
object (android.media.AudioRecord) may differ.

Even if the configurations are all the same, the
sound quality on different smart phones varies.
Because of this, a usable configuration for all
devices is very limited. Testing the audio
parameters on different devices is required, and
therefore increases the amount of effort spent
developing and testing code.

On the server side, the biggest hurdle was audio
mixing for multiple streams. If a server does

not have any mechanism for audio mixing, then
the audio stream cannot be sent concurrently.
For instance, assume three different audio
stream sends from different clients, with each of

the streams comprised of five packets
(A_1~A_5, B_1~B_5, and C_1~C_5). Each
packet includes audio data which can be played
for n milliseconds. The server then determines
client D to be these three streams final
destination. In this case, client D will receive 5

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 11

www.aitp-edsig.org - www.jisar.org

×3 =15 packets. As a result, client D needs at
least 15n milliseconds to play all the data it
received. If each stream was sent from its
source concurrently, then in theory, client D

should only need 5n milliseconds to play the
received audio data.

As more and more clients participate in
transferring audio streams, this phenomenon
grows more severe. From the Delay Testing, we
saw that if multi-source packets are transferred

concurrently, the client program will have a
significant delay. If the server can mix different
packets and reduce the overall number of
sending packets, the delay can be considerably

improved. Careful design for audio mixing is
necessary to improve overall system

performance.

6. CONCLUSIONS AND FUTURE WORK

This project undertook the development of an
audio conferencing solution based on a server
and a client program built on the Android

platform. While there could certainly be demand
for applications such as this, the development of
such a system was more difficult than
anticipated. When developing audio solutions
for multiple streams, it is necessary to
implement a server side solution for audio
mixing. Also, when implementing an Android

application the developer must make a choice.
Either they can develop an application that will
work on the majority of Android devices by
working at a low API level, or they can simplify
the problem by working at a higher level API.
One problem of course is that to develop for a

higher level API, the developer must have
access to devices capable of running more
recent versions of Android, and must accept that
if they wish to sell their application, they will be
selling to a more limited market.

A possible future study would also involve

looking more carefully at the impact of other
network traffic on VOIP calls. While there has
certainly been research done on this area

(Vaiapury, Nagarajan, & Jain, 2009; Mahani,
Kavian, Naderi, & Rashvand, 2011), it was not
the intent of this study to examine this in
particular. It would likely be worth testing the

impact of delays on VOIP over smart phones to
see if there are quality differences, or if network
congestion impacts any of the other measured
factors mentioned in this study.

While there are challenges to developing this
type of application, we believe that the demand
for this type of application will continue to
expand. As the use of smart phones becomes

more and more widespread, and users become
more comfortable with the idea of using VOIP,
there will be increased pressure on the
development community to develop this type of
solution.

7. REFERENCES

Agarwal, Y., Chandra, R., Wolman, A., Bahl, P.,

Chin, K., & Gupta, R. (2007). Wireless
wakeups revisited: energy management for

voip over wi-fi smartphones, Proceedings of
the 5th international conference on Mobile

systems, applications and services, June 11-
13, San Juan, Puerto Rico.

Android Developers, Android API Levels,

Retrieved June 18, 2012, from
http://developer.android.com/guide/appendix
/api-levels.html#level12.

CISCO, Overview of SIP. Retrieved June 18,

2012, from
http://www.cisco.com/en/US/docs/
ios/12_3/sip/configuration/guide/chapter0.ht
ml.

comScore (2012). comScore Reports July 2012
U.S. Mobile Subscriber Market Share.
Retrieved September 14, 2012 from
http://www.comscore.com/Press_Events/Pres
s_Releases/2012/9/comScore_Reports_July_
2012_U.S._Mobile_Subscriber_Market_Share

Freese, D.D. (2005). Voice over Internet

Protocol. Saturday Evening Post, (277:1),
52-55.

Gilson, C.L., Xia, R. (2007). Spanning the

Pacific Ocean through Voice-over Internet

Protocol Chat with the Hadley School for the
Blind. Journal of Visual Impairment and
Blindness, (101:4), 232-236.

International Telecommunication Union (1996).

Visual telephone systems and equipment for
local area networks which provide a non-

guaranteed quality of service.
Recommendation H.323 (11/96). Retrieved
September 14, 2012 from
http://www.itu.int/rec/T-REC-H.323/.

http://developer.android.com/guide/appendix/api-levels.html#level12
http://developer.android.com/guide/appendix/api-levels.html#level12
http://www.comscore.com/Press_Events/Press_Releases/2012/9/comScore_Reports_July_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/9/comScore_Reports_July_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/9/comScore_Reports_July_2012_U.S._Mobile_Subscriber_Market_Share
http://www.itu.int/rec/T-REC-H.323/

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 12

www.aitp-edsig.org - www.jisar.org

Isnardi, M.A, Fielder, L.D., Goldman, M.S., Todd,
C.C. (2006). ATSC Video and Audio Coding.
Proceedings of the IEEE, (94:1), 60-76.

Jaiswal, M.P., Raghav, B. (2004). Cost-Quality
based consumer perception analysis of voice
over internet protocol (VoIP) in India.
Internet Research, (14:1), 95-102.

Jia, W.K. (2008). Session-Initiation Protocol

Methodology Handbook Second Edition, Kings

Information, Taipei, TW.

Kroon, P. (1995). Evaluation of speech coders,

in Speech Coding and Synthesis. Elsevier

Science, Amsterdam.

Light, J. (2006, June). Performance Analysis of
Audio Codecs over Real-Time Transmission
Protocol (RTP) for Voice Services over
Internet Protocol. Computing & Informatics,
2006. ICOCI '06. International Conference,
pages 1-8, IEEE.

Mahani, A., Kavian, Y.S., Naderi, M., Rashvand,
H.F. (2011). Heavy-tail and voice over
internet protocol traffic: queuing analysis for
performance evaluation. IET
Communications, (5:18), 2736-2743.

Naeem, M., Namboodiri, V., & Pendse, R.,
(2010). Energy implication of various VOIP
codecs in portable devices, Local Computer
Networks (LCN), 2010 IEEE 35th Conference

on, pages 196-199, Oct. 2010.

Park, Namkee (2010). Adoption and Use of

Computer-Based Voice Over Internet Protocol
Phone Service: Toward and Integrated
Model. Journal of Communications, (60:1),

40-72.

Tech-Pro.net, 2012 Introduction to Voice over IP

(VOIP), Retrieved June 18, 2012, from

http://www.tech-pro.net/voice-over-ip.html.

Vaiapury, K., Nagarajan, M., Malmurugan, J.,
Kumar, S. (2009). Ambience-based voice
over internet protocol quality testing model.
IETE Journal of Research, (55:5), 212-217.

Wikipedia (2012a), Codec, Retrieved June 18,

2012, from

http://en.wikipedia.org/wiki/Codec.

Wikipedia (2012b), Audio Codec, Retrieved June

18, 2012, from
http://en.wikipedia.org/wiki/Audio_codec.

Editor’s Note:

This paper was selected for inclusion in the journal as a CONISAR 2012 Distinguished Paper. The
acceptance rate is typically 7% for this category of paper based on blind reviews from six or more
peers including three or more former best papers authors who did not submit a paper in 2012.

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 13

www.aitp-edsig.org - www.jisar.org

Appendix A: Figures and Tables

RTP/RTCP MediaCommunicating Comunicating

John Mary

SIP Machine A (UAC) SIP Machine B (UAS)

Request a Call
INVITE w/ Media Negotiation

100 Trying

180 Ringing

Ringing

Submit the Request

200 OK w/ Media Negotiation

ACK

BYE

200 OK

Hang up

Target Hang up Notification

Figure 1: SIP Direct Call Model.

Conference Server

Client A

Client B Client C

Client D

Figure 2: Centralized Conferencing Model

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 14

www.aitp-edsig.org - www.jisar.org

Windows 7 64-bit OS
ACPI x64-based PC

Intel® Core™ i3-370M Processor
(3M cache, 2.40 GHz, 4 CPUS)

Marvell Yukon 88E8059 PCI-E Gigabit
Ethernet Controller

Memory 4096MB RAM
100Mb Ethernet

Session Initiation Protocol
User Agent Server

Real-time Transport Protocol
Java Environment

Android OS 2.3
Sound Playback Speaker

Microphone
Session Initiation Protocol

User Agent Client
Real-time Transport Protocol

Wireless 802.11b 11Mb/802.11g 54Mb

Android OS 2.3
Sound Playback Speaker

Microphone
Session Initiation Protocol

User Agent Client
Real-time Transport Protocol

Wireless 802.11b 11Mb/802.11g 54Mb

Figure 3: Two-Tier Client Server Architecture

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 15

www.aitp-edsig.org - www.jisar.org

1

2,3,4

1,3,4
2

1,2,4

3

1,2,3

4

A

B C

D

Focus Server

Figure 4: Centralized Message Flow Model

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 16

www.aitp-edsig.org - www.jisar.org

INVITE w/ Media Negotiation

200 OK w/ Media Negotiation

ACK

Participant A Server

Loop for RTP Media

Transfer Audio Stream

Figure 5: First client joining the conference

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 17

www.aitp-edsig.org - www.jisar.org

INVITE w/ Media Negotiation

200 OK w/ Media Negotiation

ACK

Participant BServerParticipant A

Loop for RTP Media

Transfer Audio Stream

Loop for RTP Media

Transfer Audio Stream Transfer Audio Stream

Figure 6: Second client joining the conference

200 OK

BYE

Participant BServerParticipant A

Loop for RTP Media

Transfer Audio Stream Transfer Audio Stream

Loop for RTP Media

Transfer Audio Stream

Figure 7: Client leaving the conference

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 18

www.aitp-edsig.org - www.jisar.org

ChatServer

ChatHandler

SIPListener
For client B

Member

Client Information

Client Information

SIPEngine

TCP Port

UDP Port

SIPListener
for client A

Client A

SIPEngineClient

ChatHandler

ChatHandler

Client B

SIP message

Audio stream

SIPEngineClient

Figure 8: System architecture

Figure 9: Elapsed time to consume 5% of battery life

0

5

10

15

20

25

30

35

40

B C D E

El
ap

se
d

 T
im

e
 f

o
r

B
at

te
ry

 F
ro

m
 9

0
%

 t
o

8

5
%

 (
M

in
u

te
s)

Smart Phone

Without VOIP
Application
Running

Without Data
Transferring

Heavy Data
Transferring

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 19

www.aitp-edsig.org - www.jisar.org

Figure 10: Average delay time of single source audio stream network (100 Packets)

Figure 11: Average delay time of single source audio stream network (1000 Packets)

20

22

24

26

28

30

32

34

36

38

1 2 3 4 5

A
ve

ra
ge

 D
e

la
y

Ti
m

e
 (

m
s)

Sample Time

1 Phone

2 Phones

3 Phones

4 Phones

5 Phones

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

A
ve

ra
ge

 D
e

la
y

Ti
m

e
 (

m
s)

Sample Time

1 Phone

2 Phones

3 Phones

4 Phones

5 Phones

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 20

www.aitp-edsig.org - www.jisar.org

Figure 12: Average delay time of multi-sources audio stream network

Application Name Support Codec

Sipdroid Speex, G722, G711, GSM

LinPhone Speex, G711, GSM, ILBC

SipAgent Speex, G711, GSM

Kapanga
Speex, G.711, G.722, G.733, G.726, G.728, G.729, AMR, GSM,
iLBC

fring G.711, GSM

aSip G.711, GSM

Table 1: Third-party VOIP Application Supported Codec

Device Model Number CPU RAM
Android
Version

A Xperia Play 1 GHz Scorpion ARMv7 processor 512MB 2.3.4

B DROID2 ARMv7 Processor rev 2 (V7I) 512MB 2.3.7

C DROID2 ARMv7 Processor rev 2 (V7I) 512MB 2.3.7

D SCHI500
Samsung-Intrinsity S5PC110 RISC
Application Processor

512MB 2.3.4

E SCHI500
Samsung-Intrinsity S5PC110 RISC
Application Processor

512MB 2.1-update1

Table 2: Experimental Smart Phones Specification

2000

2500

3000

3500

4000

4500

1 2 3 4 5

A
ve

ra
ge

 D
e

ka
y

Ti
m

e
 (

m
s)

Sample Time

2 Phones

3 Phones

4 Phones

5 Phones

Journal of Information Systems Applied Research (JISAR) 6(2)
ISSN: 1946-1836 May 2013

©2013 EDSIG (Education Special Interest Group of the AITP) Page 21

www.aitp-edsig.org - www.jisar.org

Platform Version API Level VERSION_CODE

Android 4.0.3 15 ICE_CREAM_SANDWICH_MR1

Android 4.0, 4.0.1, 4.0.2 14 ICE_CREAM_SANDWICH

Android 3.2 13 HONEYCOMB_MR2

Android 3.1.x 12 HONEYCOMB_MR1

Android 3.0.x 11 HONEYCOMB

Android 2.3.4

Android 2.3.3
10 GINGERBREAD_MR1

Android 2.3.2

Android 2.3.1

Android 2.3

9 GINGERBREAD

Android 2.2.x 8 FROYO

Android 2.1.x 7 ECLAIR_MR1

Android 2.0.1 6 ECLAIR_0_1

Android 2.0 5 ÉCLAIR

Android 1.6 4 DONUT

Android 1.5 3 CUPCAKE

Android 1.1 2 BASE_1_1

Android 1.0 1 BASE

Table 3: API Level Supported by each version of the Android OS (Android.com, 2012)

